từ điểm A ở ngoài đường tròn kẻ 2 tiếp tuyến AB,AC với đường tròn . M là trung diểm AC ,MB cắt đường tròn O tại K, AK cắt đường tròn O tại D. chứng minh BD//AC
các bạn giúp mình nhé mình cần gấp lắm rồi .cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ΔMKC∼ΔMCB(g.g)ΔMKC∼ΔMCB(g.g)
→MC2=MK.MB→MA2=MK.MB(MA=MC)→MC2=MK.MB→MA2=MK.MB(MA=MC)
→ΔMAK∼ΔMBA(c.g.c)→ΔMAK∼ΔMBA(c.g.c)
→ \(\widehat{MAK}=\widehat{MBK}=\widehat{BDK}\)
→BD//AM→BD//AC→BD//AM→BD//AC
a) OB=OC (=R) VÀ AB=AC(/c 2 tt cắt nhau)\(\Rightarrow\)OA LÀ ĐƯỜNG TRUNG TRỤC CỦA BC. b) \(BD\perp AB\)(t/c tt) và BE \(\perp AC\)(A \(\varepsilon\left(O\right)\)đường kính BC ). Aps dụng hệ thúc lượng ta có AE*AC=AB\(^2\)=AC\(^2\).
c) c/m OD\(^2=OB^2=OH\cdot OA\)và OH*OA=OK*OF ( \(\Delta OAK\omega\Delta OFH\left(g-g\right)\))\(\Rightarrow\frac{OD}{OF}=\frac{OK}{OD}\)mà góc FOD chung\(\Rightarrow\Delta OKD\omega\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{ODF}=\widehat{OKD}=90\Rightarrow OD\perp DF\Rightarrowđpcm\)
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hỏi câu quá dễ
bạn giúp mình nhé