K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2022

a) 

Do \(\triangle ABC \) cân ( \(AB=AC\) )

\(\Rightarrow \widehat{ABC} = \widehat{ACB}\)

Mà \(BE ; CF\) lần lượt là đường phân giác của \(\widehat{ABC} ; \widehat{ACB}.\)

\(\Rightarrow \widehat{ABE} = \widehat{ACF} \)

Xét \(\triangle ABE\) và \(\triangle ACF\) ta  có :

\(AB = AC\) ( gt )

\(\widehat{ABC}\) chung 

\(\widehat{ABE} = \widehat{ACF} \) ( cmt )

\(\Rightarrow \) \(\triangle ABE\) \(=\) \(\triangle ACF\) ( g.c.g )

 

30 tháng 4 2022

làm hộ mình câu c và d

 

5 tháng 5 2019

tam giác ABC có : BE; CF là trung tuyến và cắt nhau tại I

=> AI là trung tuyến (tc)

mà tam giác ABC cân tại A (Gt)

=> AI là phân giác của góc BAC (đl)

5 tháng 5 2019

a)Xét\(\Delta ABC\)có:\(BE\)là đg trung tuyến xuất phát từ đỉnh\(B\left(GT\right)\)

\(CF\)là đg trung tuyến xuất phát từ đỉnh\(C\left(GT\right)\)

\(BE\)cắt\(CF\)tại\(I\)

\(\Rightarrow AI\)là đg trung tuyến xuất phát từ đỉnh\(A\)(Định lí về tính chất 3 đg trung tuyến của 1\(\Delta\))

\(\Delta ABC\)cân tại\(A\left(GT\right)\)

\(\Rightarrow AI\)vừa là đg trung tuyến vừa là đg p/g của\(\Delta ABC\)(Tính chất của tg cân)

b)Xét\(\Delta ABI\)\(\Delta ACI\)có:

\(AI\)là cạnh chung

\(\widehat{BAI}=\widehat{CAI}\)(\(AI\)là tia p/g của\(\widehat{BAC}\))

\(AB=AC\)(\(\Delta ABC\)cân tại\(A\))

Do đó:\(\Delta ABI=\Delta ACI\left(c-g-c\right)\)

\(\Rightarrow\widehat{ABI}=\widehat{ACI}\)(2 cạnh t/ứ)

\(BI=CI\)(2 cạnh t/ứ)

Xét\(\Delta ABE\)\(\Delta ACF\)có:

\(\widehat{ABE}=\widehat{ACF}\left(cmt\right)\)

\(AB=AC\)​(\(\Delta ABC\)cân tại\(A\))

\(\widehat{BAC}\)là góc chungDo đó:\(\Delta ABE=\Delta ACF\left(g-c-g\right)\)\(\Rightarrow BE=CF\)(2 cạnh t/ứ)Xét\(\Delta IBC\)có:\(IB=IC\left(cmt\right)\)Do đó:\(\Delta IBC\)cân tại\(I\)(Định nghĩa\(\Delta\)cân)c)Gọi\(M\)là giao điểm của\(AI\)\(BC\),\(H\)là đg cao xuất phát từ đỉnh\(P\)của\(\Delta ABP\)Xét\(\Delta ABC\)có:\(AM\)là tia p/g của\(\widehat{BAC}\))mà\(\Delta ABC\)cân tại\(A\left(GT\right)\)\(\Rightarrow AM\)là đg trung trực của\(BC\)(Tính chất về tg cân)\(\Rightarrow AM\perp BC\)hay\(AP\perp BM\)Xét\(\Delta ABP\)có:\(BM\)là đg cao xuất phát từ đỉnh\(B\left(cmt\right)\)\(PH\)là đg cao xuất phát từ đỉnh\(P\left(GT\right)\)\(BM\)cắt\(PH\)tại\(K\)\(\Rightarrow AK\)là đg cao thứ 3 của\(\Delta ABP\)hay\(AK\perp BP\) 
19 tháng 1 2015

OHQ chắc đúng hơn

11 tháng 2 2016

Cho Q hỏi S Thánh trả lời được 

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Xét ΔAFH vuông tại F và ΔAEH vuông tại E có

AH chung

AF=AE

Do đó: ΔAFH=ΔAEH

Suy ra: \(\widehat{FAH}=\widehat{EAH}\)

hay AH là tia phân giác của góc BAC

mà ΔABC cân tại A

nên AH là đường cao

16 tháng 3 2022

Xét tg ABE vuông tại E và tg ACF vuông tại F, có:

AB=AC(tg ABC cân tại A)

góc E=góc F(=90 độ)

góc BAE chung.

=>tg ABE=tg ACF.

 b, Xét tg AHF vuông tại F và ΔAEH vuông tại E có

AH chung.

AF=AE(2 cạnh tương ứng)

góc E=góc F.

=>tg AHF=tg AEH.

=>góc FAH=góc EAH.

=>AH là cạnh chung của 2 góc. Vậy AH là tia phân giác của góc BAC.