Thực hiện phép tính sau: (x/x-2 - 3/x+2)× 2x²-8/x-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{6}{x^2+4x}+\dfrac{3}{2x+8}\\ =\dfrac{6}{x\left(x+4\right)}+\dfrac{3}{2\left(x+4\right)}\\ =\dfrac{6.2}{2x\left(x+4\right)}+\dfrac{3x}{2x\left(x+4\right)}\\ =\dfrac{12+3x}{2x\left(x+4\right)}\\ =\dfrac{3\left(4+x\right)}{2x\left(x+4\right)}\\ =\dfrac{3}{2x}\)
________
\(\dfrac{x+1}{x-2}+\dfrac{x-2}{x+2}+\dfrac{x-14}{x^2-4}\\ \left(\text{đ}k\text{x}\text{đ}:x\ne\pm2\right)\\ =\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}+\dfrac{x-14}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x^2+2x+x+2+x^2-4x+4+x-14}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{2x^2-8}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{2\left(x^2-4\right)}{x^2-4}\\ =2\)
a: \(=\dfrac{6}{x\left(x+4\right)}+\dfrac{3}{2\left(x+4\right)}\)
\(=\dfrac{12+3x}{2x\left(x+4\right)}=\dfrac{3\left(x+4\right)}{2x\left(x+4\right)}=\dfrac{3}{2x}\)
b: \(=\dfrac{\left(x+1\right)\left(x+2\right)+\left(x-2\right)^2+x-14}{x^2-4}\)
\(=\dfrac{x^2+3x+2+x^2-4x+4+x-14}{x^2-4}=\dfrac{2x^2-8}{x^2-4}=2\)
Bài 1:
b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)
Bài 2:
a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)
d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)
\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)
e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)
a: \(\dfrac{4-x^2}{x-3}+\dfrac{2x-2x^2}{3-x}+\dfrac{5-4x}{x-3}\)
\(=\dfrac{4-x^2-2x+2x^2+5-4x}{x-3}=\dfrac{x^2-6x+9}{x-3}\)
=(x-3)^2/(x-3)
=x-3
b: \(\dfrac{2}{x+2}+\dfrac{-4}{2-x}+\dfrac{5x+2}{4-x^2}\)
\(=\dfrac{2}{x+2}-\dfrac{4}{x-2}-\dfrac{5x+2}{x^2-4}\)
\(=\dfrac{2x-4-4x-8-5x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-7x-14}{\left(x-2\right)\left(x+2\right)}\)
=-7(x+2)/(x-2)(x+2)
=-7/(x-2)
b: \(\dfrac{xy}{2x-y}-\dfrac{2x^2}{y-2x}=\dfrac{xy}{2x-y}+\dfrac{2x^2}{2x-y}=\dfrac{xy+2x^2}{2x-y}\)
b: \(\dfrac{3x^2-x}{x-1}+\dfrac{x+2}{1-x}+\dfrac{3-2x^2}{x-1}\)
\(=\dfrac{3x^2-x-x-2+3-2x^2}{x-1}\)
\(=\dfrac{x^2-2x+1}{x-1}=x-1\)
`a)A=x(x+y)-x(y-x)`
`=x^2+xy-xy+x^2`
`=2x^2`
Thay `x=-3`
`=>A=2.9=18`
`b)B=4x(2x+y)+2y(2x+y)-y(y+2x)`
`=8x^2+4xy+4xy+2y^2-y^2-2xy`
`=8x^2+y^2+6xy`
Thay `x=1/2,y=-3/4`
`=>B=8*1/4+9/16-9/4`
`=2+9/16-9/4`
`=9/16-1/4=5/16`
1.
$2x^3-21x^2+67x-60=2x^2(x-5)-11x(x-5)+12(x-5)$
$=(x-5)(2x^2-11x+12)$
$\Rightarrow (2x^3-21x^2+67x-60):(x-5)=2x^2-11x+12$
2.
$x^4+2x^3+x-25=x^2(x^2+5)+2x(x^2+5)-5x^2-9x-25$
$=x^2(x^2+5)+2x(x^2+5)-5(x^2+5)-9x=(x^2+5)(x^2+2x-5)-9x$
$\Rightarrow (x^4+2x^3+x-25):(x^2+5)=x^2+2x-5$ và dư $-9x$
\(=\dfrac{x^2+2x-3x+6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{2\left(x-2\right)\left(x+2\right)}{x-3}\)
\(=\dfrac{2\left(x^2-x+6\right)}{x-3}\)