Tìm số nguyên x, biết -6 chia hết cho x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x+2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{-1;-3;0;-4;1;-5;4;-8\right\}\)
a) x+6 \(⋮\)x
\(\Leftrightarrow\)6 \(⋮\) x (vì muốn tổng chia hết thì từng số hạng phải chia hết, mà x chia hết cho x)
\(\Leftrightarrow\) x\(\in\)Ư(6) ={1: -1: 2: -2: 3; -3: 6: -6}
tương tự câu b) thì x \(\in\)Ư(5) ={_1, 1, 5, -5}
c)thì 2x+1=2x+2-1=2(x+1)-1
vì 2(x+1) chia hết cho x+1 nên -1 chia hết cho x+1
=>x+1 \(\in\)Ư(-1)={1, -1}
=>x \(\in\){0,-2}
Ta có x+6 chia hết cho x
suy ra x+6-x chia hết cho x
6 chia hết cho x suy ra x thuộc Ư(6)
Vậy x thuộc{-1;1;-2;2;-3;3;6;-6}
Do vai trò bình đẳng của x, y, z trong phương trình,
trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z
=> xyz = x + y + z ≤ 3z => xy ≤ 3=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1,
thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2,
thay vào (2), => z = 3.Nếu xy = 3,
do x ≤ y nên x = 1 và y = 3,
thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3)
Ta có x-7=x+6-13
=> 13 chia hết cho x+6
=> x+6 thuộc Ư (13)={-13;-1;1;13}
Ta có bảng
x+6 | -13 | -1 | 1 | 13 |
x | -19 | -7 | -5 | 7 |
Có x-7 chia hết cho x+6
=>x+6-13 chia hết cho x+6
=>13 chia hết cho x+6
=>x+6 thuộc Ư(13)={1;13;-1;-13}
=>x thuộc {-5;7;-7;-19}
Vậy.....
-6 ⋮ x -2
x - 2 ϵƯ(6) = { -6; -3; -2; -1; 1; 2; 3; 6}
x ϵ { -4; -1; 1; 3; 4; 5; 8}