Cho \(\dfrac{x}{2020}+\dfrac{y}{2021}+\dfrac{z}{2022}=1\) và \(\dfrac{2020}{x}+\dfrac{2021}{y}+\dfrac{2022}{z}=0\) \(\left(x,y,z\ne0\right)\)
Chứng minh rằng \(\dfrac{x^2}{2020^2}+\dfrac{y^2}{2021^2}+\dfrac{z^2}{2022^2}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(\left\{{}\begin{matrix}x>2019\\y>2020\\z>2021\end{matrix}\right.\)
Đặt \(\sqrt{x-2019}=a,......\)
Ta được PT : \(\dfrac{1-a}{a^2}+\dfrac{1-b}{b^2}+\dfrac{1-c}{c^2}+\dfrac{3}{4}=0\)
\(\Leftrightarrow\dfrac{1}{a^2}-\dfrac{1}{a}+\dfrac{1}{4}+\dfrac{1}{b^2}-\dfrac{1}{b}+\dfrac{1}{4}+\dfrac{1}{c^2}-\dfrac{1}{c}+\dfrac{1}{4}=0\)
\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2=0\)
- Thấy : \(\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2\ge0,......\)
\(\Rightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2\ge0\)
- Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{2}\\\dfrac{1}{b}=\dfrac{1}{2}\\\dfrac{1}{c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)
- Thay lại a. b. c ta được : \(\left\{{}\begin{matrix}\sqrt{x-2019}=2\\\sqrt{y-2020}=2\\\sqrt{z-2021}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2019=4\\y-2020=4\\z-2021=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2023\\y=2024\\z=2025\end{matrix}\right.\) ( TM )
Vậy ...
a)
`(2x-1)(x+2/3)=0`
\(< =>\left[{}\begin{matrix}2x-1=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b)
\(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)
\(< =>\dfrac{x+4}{2019}+1+\dfrac{x+3}{2020}+1=\dfrac{x+2}{2021}+1+\dfrac{x+1}{2022}+1\)
\(< =>\dfrac{x+2023}{2019}+\dfrac{x+2023}{2020}=\dfrac{x+2023}{2021}+\dfrac{x+2023}{2022}\)
\(< =>\left(x+2023\right)\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\right)=0\)
\(< =>x+2023=0\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\ne0\right)\\ < =>x=-2023\)
Lời giải :
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\Leftrightarrow\dfrac{x^2}{a^2+b^2+c^2}-\dfrac{x^2}{a^2}+\dfrac{y^2}{a^2+b^2+c^2}-\dfrac{y^2}{b^2}+\dfrac{z^2}{a^2+b^2+c^2}-\dfrac{z^2}{c^2}=0\)
\(\Leftrightarrow x^2\left(\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{a^2}\right)+y^2\left(\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{b^2}\right)+z^2\left(\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{c^2}\right)=0\)
Do \(\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{a^2}\ne0;\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{b^2}\ne0;\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{c^2}\ne0\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\) \(\Rightarrow\)\(\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)
Thay vào biểu thức P :
\(P=0^{2020}+\left(y-1\right)^{2022}+\left(z-1\right)^{203}=0+1-1=0\)
\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)\)
\(=\left(1-1\right)+\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{2021}\right)\)
\(=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\)
Giải:
\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\)
Ta có:
\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)\)
\(=\left(1-1\right)+\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{2021}\right)\)
\(=0+\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}\)
\(=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}\)
Mà \(\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\)
\(\Rightarrow2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\left(đpcm\right)\)
\(A=\left(\dfrac{2020}{2021}xy^5z\right).\left(\dfrac{2020}{2021}x^3yz^2\right).\left(-\dfrac{2020}{2021}\right)^0\)
\(a)A=\dfrac{2020.2021.2020}{2021.2020.2021}.\left(x.x^3\right).\left(y^5.y\right).\left(z.z^2\right)\Leftrightarrow A=\dfrac{2020}{2021}x^4.y^6.z^3\)
\(b)A=\dfrac{2020}{2021}x^4.y^6.z^3\)
\(\Rightarrow\text{A có hệ số là:}\dfrac{2020}{2021}\)
\(\text{Phần biến là:}\left(x,y,z\right)\)
\(c)\text{Xét A ta có:}\dfrac{2020}{2021}< 0;x^4,y^6\text{ luôn }< 0\)
\(\Rightarrow\dfrac{2020}{2021}x^4.y^6>0\Rightarrow\text{ Nếu }z< 0\Rightarrow A\le0\text{ và z có số mũ là:3}\)
\(\text{Chẳng hạn:}\left(-\right).\left(-\right).\left(-\right)=\left(-\right).< 0\Rightarrow z\text{ phải }\ge0\text{ thì }A\ge0\)
\(\Rightarrow Z\in N\)
\(=2021\cdot2\cdot\left(1+\dfrac{1}{2}:\dfrac{3}{2}-\dfrac{4}{3}\right)=4042\cdot\left(1+\dfrac{1}{3}-\dfrac{4}{3}\right)=0\)
Lời giải:
\(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=\frac{1}{x+y-z}\Leftrightarrow \frac{x+y}{xy}=\frac{1}{z}+\frac{1}{x+y-z}=\frac{x+y}{z(x+y-z)}\)
\(\Leftrightarrow (x+y)(\frac{1}{xy}-\frac{1}{z(x+y-z)})=0\)
\(\Leftrightarrow (x+y).\frac{z(x+y-z)-xy}{xyz(x+y-z)}=0\)
\(\Leftrightarrow (x+y).\frac{(z-x)(y-z)}{xyz(x+y-z)}=0\)
\(\Leftrightarrow (x+y)(z-x)(y-z)=0\)
Xét các TH sau:
TH1: $x+y=0$. TH này loại do ĐKXĐ $x,y>0$
TH2: $z-x=0\Leftrightarrow z=x$
$\Leftrightarrow \frac{1}{y}=\frac{2020}{2021}$
\(M=\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}=\frac{2}{\sqrt{y}}=2\sqrt{\frac{2020}{2021}}\)
TH3: $y-z=0$ tương tự TH2, ta có \(M=2\sqrt{\frac{2020}{2021}}\)
Cứu với ;-;