Tìm x,y thuộc z sao cho y+2x=x-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
2x+xy+y = 10
=> 2x+xy + y +2 = 12
=> 2(x+1) + y(x+1)= 12
=> (x+1)(2+y) = 12
=> (x+1); (2+y) \(\inƯ\left(12\right)=\left\{\pm1;\pm12;\pm6;\pm3;\pm4;\pm2\right\}\)
(sau đó lập bảng tự làm tiếp :v )
Chúc em học tốt !
\(2x+xy+y=10\)
\(\Rightarrow x\left(2+y\right)+\left(2+y\right)=2+10\)
\(\Rightarrow\left(x+1\right)+\left(2+y\right)=12\)
\(\Rightarrow\left(x+1\right);\left(2+y\right)\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
\(TH1:\hept{\begin{cases}x+1=1\\2+y=12\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=10\end{cases}}}\)\(TH2:\hept{\begin{cases}x+1=-1\\2+y=-12\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-14\end{cases}}}\)
\(TH3:\hept{\begin{cases}x+1=2\\2+y=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=4\end{cases}}}\) \(TH4:\hept{\begin{cases}x+1=-2\\2+y=-6\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-8\end{cases}}}\)
\(TH5:\hept{\begin{cases}x+1=3\\2+y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}}\)\(TH6:\hept{\begin{cases}x+1=-3\\2+y=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=-4\\y=-6\end{cases}}}\)
\(TH7:\hept{\begin{cases}x+1=12\\2+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=11\\y=-1\end{cases}}}\) \(TH8:\hept{\begin{cases}x+1=-12\\2+y=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-13\\y=-3\end{cases}}}\)
\(TH9:\hept{\begin{cases}x+1=6\\2+y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\) \(TH10:\hept{\begin{cases}x+1=-6\\2+y=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=-7\\y=-4\end{cases}}}\)
\(TH11:\hept{\begin{cases}x+1=4\\2+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\) \(TH12:\hept{\begin{cases}x+1=-4\\2+y=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-5\end{cases}}}\)
Vậy............................
\(a,x-5⋮x+2\)
\(\Rightarrow x+2-7⋮x+2\)
\(\Rightarrow x+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
x + 2 = 1=> x = -1
x + 2 = -1 => x = -3
.... tương tự nhé ~
\(2x+3⋮x-5\)
\(\Rightarrow2x-10+7⋮x-5\)
\(\Rightarrow2\left(x-5\right)+7⋮x-5\)
\(\Rightarrow x-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
x - 5 = 1 => x = 6
....
\(xy=2x+2y\\ \Rightarrow xy-2x-2y=0\\ \Rightarrow x\left(y-2\right)-2y+4=4\\ \Rightarrow x\left(y-2\right)-2\left(y-2\right)=4\\ \Rightarrow\left(x-2\right)\left(y-2\right)=4\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-2,y-2\in Z\\x-2,y-2\inƯ\left(4\right)\end{matrix}\right.\)
Ta có bảng:
x-2 | -1 | -2 | -4 | 1 | 2 | 4 |
y-2 | -4 | -2 | -1 | 4 | 2 | 1 |
x | 1 | 0 | -2 | 3 | 4 | 6 |
y | -2 | 0 | 1 | 6 | 4 | 3 |
Vậy \(\left(x,y\right)\in\left\{\left(1;-2\right);\left(0;0\right);\left(-2;1\right);\left(3;6\right);\left(4;4\right);\left(6;3\right)\right\}\)
x=5 y= -10 k nha