Chứng minh rằng -a phần b và a phần -b luôn bằng nhau,
-a phần -b và a phần b luôn bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề: Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng: \(\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\).
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=t\).
\(\frac{a+c}{b+d}=\frac{bt+dt}{b+d}=\frac{t\left(b+d\right)}{b+d}=t\)
\(\frac{a-c}{b-d}=\frac{bt-dt}{b-d}=\frac{t\left(b-d\right)}{b-d}=t\)
Do đó \(\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\).
Ta có:
\(\dfrac{a\dfrac{1}{b}}{b\dfrac{1}{a}}=\dfrac{\dfrac{ab+1}{b}}{\dfrac{ab+1}{a}}=\dfrac{ab+1}{b}.\dfrac{a}{ab+1}=\dfrac{a}{b}\)
Vậy...........
Chúc bạn học tốt!!!
các phân số này bằng nhau là đương nhiên cái này là thi toán cấp huyện lớp 4
Áp dụng t.c dtsbn:
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\\ \Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng \(\frac{a}{a-b}=\frac{c}{c-d}\)
Có \(\frac{a}{a-b}=\frac{c}{c-d}\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a}-\frac{b}{a}=\frac{c}{c}-\frac{d}{c}\Leftrightarrow1-\frac{b}{a}=1-\frac{d}{c}\)
\(\Rightarrow\frac{b}{a}=\frac{d}{c}hay\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
Đề bài cho \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow b=c.\) Không thể \(ad=bc\Rightarrow\) Đề sai
Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)
\(\Rightarrow a=kb,c=kd\)
Xét: \(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
\(\frac{c}{c-d}=\frac{kd}{kd-d}=\frac{kd}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{a-b}=\frac{c}{c-d}\)
Ta có: (-a) . b = - (a . b) = a . (-b).
Do đó (theo định nghĩa SGK).
vì mỗi số nguyên đề có hai giá trị.
a phần b nhân với -1 = -a phần -b
-a phần b nhân với -1 = a phần -b