Tìm n để : \(n^2\)- n - 1 chia hết cho n -1
n thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm n thuộc z để n3 + n2- n +5 chia hết cho n+2
2. Tìm n thuộc z để n3 + 3n -5 chia hết cho n2 +2
\(\Rightarrow n^2+n-n+3⋮n+1\\ n\left(n+1\right)-n+3⋮n+1\\\Rightarrow n+3⋮n+1\\ \Rightarrow n+1+2⋮n1\\ \Rightarrow2⋮n+1\\ \Rightarrow n+1\in\text{Ư}\left(2\right)=\left\{\pm1;\pm2\right\}\)
ta có :
\(n+1=1\\ n=1-1\\ n=0\\ n+1=-1\\ n=\left(-1\right)+1\\ n=0\\ n+1=2\\ n=2-1\\ n=1\\ n+1=-2\\ n=\left(-2\right)-1\\ n=-3\)
a: \(\Leftrightarrow n^3-2n^2+2n^2-4n+3n-6+6⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\n^2+n-2=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
Ta có: n2+5 chia hết cho n+1
n.n+5 chia hết cho n+1
n.n+1+4 chia hết cho n+1
4n chia hết cho n+1
4n chia hết cho n và 4n chia hết cho 1.
Mà 4n chia n =4, 4n chia 1=4n
Suy ra n=4n
Bằng phép thử trực tiếp, ta tìm được n=0 thỏa ,anh điều kiên trên.
Vậy n=0