Tinh B=1+2^2+2^4+...+2^100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+.......+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\)
\(\Leftrightarrow2B=1+\dfrac{1}{2^2}+\dfrac{2}{2^3}+\dfrac{3}{2^4}+........+\dfrac{98}{2^{99}}+\dfrac{99}{2^{100}}\)
\(\Leftrightarrow2B-B=\left(1+\dfrac{1}{2^2}+\dfrac{2}{2^3}+........+\dfrac{99}{2^{100}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+......+\dfrac{100}{2^{100}}\right)\)
\(\Leftrightarrow B=\dfrac{1}{2}+\dfrac{1}{2^2}+..........+\dfrac{1}{2^{100}}-\dfrac{100}{2^{100}}\)
Đặt :
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{99}}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+......+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^{100}}\)
\(\Leftrightarrow B=1-\dfrac{1}{2^{100}}-\dfrac{100}{2^{100}}\)
\(\Leftrightarrow B=\dfrac{2^{100}-101}{2^{100}}\)
1 - 2 - 3 + 4 + 5 - 6 - 7 + 8+ ... + 1993 - 1994
= ( 1 - 2 - 3 + 4 ) = ( 5 - 6 - 7 + 8 ) + ... + 1993 - 1994
= 0 + 0 + ... + 1993 - 1994
= 0 + ( -1 ) = -1
b) ta có 1^2+2^2+...+n^2 = n(n+1)(2n+1)/6
=>2^2+4^2+...+(2n)^2= 2^2(1^2+2^2+...+n^2)= 2n(n+1)(2n+1)/3
và 1^2+2^2+...+(2n+1)^2=(2n+1)(2n+2)(4n+3)/...
=>1^2+3^2+5^2+...+(2n+1)^2 = (2n+1)(2n+2)(4n+3)/6 - 2n(n+1)(2n+1)/3 = (2n+1)(n+1)(2n+3)/3
=>1^2-2^2+3^2-4^2+..... -(2n)^2+(2n+1)^2 = (2n+1)(n+1)(2n+3)/3 - 2n(n+1)(2n+1)/3 = (n+1)(2n+1)
do đó ta có khi n = 100 thì
1^2-2^2+3^2-4^2.....+99^2-100^2+101^2 = (100+1)*(2*100+1)=201*101
Mình cũng không chắc câu b cho lắm
A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101=
= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101 =
=(2^101 -1)/2^100 - 100/2^101
=> A= (2^101 -1)/2^99 - 100/2^100
Bài 1 :
\(S=1.3+3.5+5.7+...+99.101=3+15+35+...9999\)
Ta thấy :
\(3=2^2-1\)
\(15=4^2-1\)
\(35=6^2-1\)
.....
\(9999=100^2-1\)
\(\Rightarrow S=2^2+4^2+...+100^2-\left(1\right).\left(\left(100-2\right):2+1\right)\)
\(\Rightarrow S=\dfrac{100.\left(100+1\right)\left(2.100+1\right)}{6}-51\)
\(\Rightarrow S=\dfrac{100.101.201}{6}-51=338299\)
a)A=1+2+22+...+2100
=>2A=2+22+23+...2101
=>2A-A=(2+22+23+...+2101)-(1+2+22+...+2100)
=>A=2101-1
b)B=3+32+33+...+3100
=>3B=32+33+...+3101
=>3B-B=(32+33+...+3101)-(3+32+...3100)
=>2B-B=3101-3
=>B=(3101-3):2
c)C=1+2+4+8+16+...+8192
=>C=1+2+22+23+...213
=>2C=2+22+23+...+214
=>2C-C=(2+22+...+214)-(2+22+...+213)
=>C=214-2
d)D=4+42+43+...+4n
=>4D=42+43+...+4n+1
=>4D-D=(42+43+...+4n+1)-(4+42+...+4n)
=>3D=4n+1-4
=>D=(4n+1-4):3