Tìm một số có 4 chữ số biết rằng số đó chia cho 100 dư 6 còn chia cho 51 dư 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là abcd , thì abcd tận cùng là 06 (do abcd chia 100 dư 6)
=> abcd là số chẵn
Q chia 51 dư 17 => Q chia hết cho 17
Ta có ab06 chia hết cho 17
=> ac89 + 17 = ab06 (sao cho c + 1 = b)
=> ac x 100 + 89 chia hết cho 17
=> ad x 100 + 289 chia hết cho 17 (d + 2 = c)
=> ad x 100 chia hết cho 17
=> ad chia hết cho 17
=> ad thuộc {17;34;51;68;85}
abcd lần lượt thuộc {2006;3706;5406;7106;8806}
do abcd chia 51 dư 17, mà 51 chia hết cho 3, 17 chia 3 dư 2 (=) abcd chia 3 dư 2
trong tập hợp trên, chỉ có các số 2006, 7106 thõa mãn dữ kiện trên
=> Q có thể là 2006; 7106
gọi số cần tìm có dạng abcd
mà abcd chia 100 dư 7 => abcd -7 chia hết cho 100
=> 1000a+100b+10c+d-7 chia hết cho 100
abcd chia 51 dư 18 => abcd -18 chia hết cho 51
=> 1000a+100b+10c+d-51 chia hết cho 51