cho tam giácABC vuông tại A đường cao AH (H∈BC), biết BH=4cm, CH=16cm. Độ dài AB là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; BC = 5cm
b, AB = 15cm; AC = 20cm; AH = 12cm; BC = 25cm
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
\(S_{ABC}=\dfrac{AH\cdot BC}{2}=150\left(cm^2\right)\)
\(S_{BAC}=\dfrac{AH\cdot BC}{2}=\dfrac{12\cdot25}{2}=150\left(cm^2\right)\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
DO đó:ΔABC\(\sim\)ΔHBA
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
c: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó:ADHE là hình chữ nhật
Suy ra: AH=DE
mà \(AH=\sqrt{4\cdot16}=8\left(cm\right)\)
nên DE=8cm
Xét tam giác ABC vuông tại A , đường cao AH:
Ta có: AB 2 = BH . BC (Hệ thức lượng)
<=> AB 2 = BH . (BH + CH)
Thay số: AB 2 = 4 . (4 + 16)
<=> AB 2 = 80
<=> AB = \(4\sqrt{5}\) (cm)
Vậy độ dài AB = \(4\sqrt{5}\) (cm)