Cho\(\pi< a< \dfrac{3\pi}{2}\).Trong các khẳng định sau khẳng định nào đúng?
A sin(\(\dfrac{7\pi}{2}+a\))>0
B sin(\(\dfrac{7\pi}{2}+a\))≥0
C sin(\(\dfrac{7\pi}{2}+a\))<0
D sin(\(\dfrac{7\pi}{2}+a\))≤0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 0 < α < π/2 nên sin α > 0, cos α > 0, tan α > 0, cot α > 0.
\(A=sin\left(\dfrac{7}{9}pi\right)+sin\left(\dfrac{pi}{9}\right)-sin\left(\dfrac{5}{9}pi\right)\)
\(=2\cdot sin\left(\dfrac{1}{2}\cdot\dfrac{8}{9}pi\right)\cdot cos\left(\dfrac{1}{2}\cdot\dfrac{6}{9}pi\right)-sin\left(\dfrac{5}{9}pi\right)\)
\(=sin\left(\dfrac{4}{9}pi\right)-sin\left(\dfrac{5}{9}pi\right)\)
\(=2\cdot cos\left(\dfrac{\dfrac{4}{9}pi+\dfrac{5}{9}pi}{2}\right)\cdot sin\left(\dfrac{\dfrac{4}{9}pi-\dfrac{5}{9}pi}{2}\right)\)
=0
Ta có \(F=sin^2\dfrac{\pi}{6}+...+sin^2\pi=\left(sin^2\dfrac{\pi}{6}+sin^2\dfrac{5\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+sin^2\dfrac{4\pi}{6}\right)+\left(sin^2\dfrac{3\pi}{6}+sin^2\pi\right)=\left(sin^2\dfrac{\pi}{6}+cos^2\dfrac{\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+cos^2\dfrac{2\pi}{6}\right)+\left(1+0\right)=1+1+1=3\)
Ta có: \(\cos \left( {\pi - \alpha } \right) = - \cos \alpha \)
Vậy ta chọn đáp án B
\(VT=\dfrac{-tan\left(\dfrac{\pi}{2}-a\right)cos\left(2\pi-\dfrac{\pi}{2}+a\right)-sin^3\left(4\pi-\dfrac{\pi}{2}-a\right)}{cos\left(\dfrac{\pi}{2}-a\right)tan\left(2\pi-\dfrac{\pi}{2}+a\right)}\)
\(=\dfrac{-cota.sina+sin^3\left(\dfrac{\pi}{2}+a\right)}{sina.\left(-cota\right)}=\dfrac{-cosa+cos^3a}{-cosa}=1-cos^2a=sin^2a\)
\(\pi< a< \dfrac{3\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina< 0\\cosa< 0\end{matrix}\right.\)
\(sin\left(\dfrac{7\pi}{2}+a\right)=sin\left(4\pi-\dfrac{\pi}{2}+a\right)=sin\left(-\dfrac{\pi}{2}+a\right)=-sin\left(\dfrac{\pi}{2}-a\right)=-cosa>0\)
Đáp án A