tìm tất cả các số có 4 chữ số \(\overline{abcd}\)thỏa mãn điều kiện: a+b=cd và c+d=ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học
2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365
Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)
từ (gt) db¯+c=b^2+ d (2)
=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9
+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)
+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7
Thay vào (2) ta đc c = 9
Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9
=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn
Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)
từ (gt) db¯+c=b^2+ d (2)
=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9
+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)
+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7
Thay vào (2) ta đc c = 9
Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9
=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn
abcd = 120 => d = 120 : (abc) = 120 : 30 = 4
c = (abc) : (ab) = 30 : (-6) = -5
=> b = (bc) : c = -15 : (-5) = 3
a = (ab) : b = -6 : 3 = -2
Theo gt: ab là số nguyên tố nên b lẻ và b khác 5 (vì khi b = 5 thì a5 chia hết cho 5, vô lí)
\(\overline{db}+c=b^2+d\)
\(\Rightarrow10d+b+c=b^2+d\)
\(\Rightarrow9d+c=b\left(b-1\right)\)
Vì c,d là các chữ số nên \(9d+c\ge9\Rightarrow b\left(b-1\right)\ge9\)
\(\Rightarrow b>3\)
Từ đó suy ra b = 7 hoặc b = 9
+) b = 7 thì \(9d+c=42\Rightarrow3< d< 5\Rightarrow d=4\)(vô lí)
+) b= 9 thì \(9d+c=72\Rightarrow7\le d\le8\Rightarrow d=7\)(vì d lẻ)
Vậy số cần tìm là 1997
Gợi ý: Giả sử \(c\le d\)
Ta có: \(0< a+b\le18\)
\(\Leftrightarrow0< cd\le18\)
\(\Rightarrow c^2\le cd\le18\)
\(\Rightarrow0< c\le4\)
Thế c = 1 vào ta được
\(\hept{\begin{cases}a+b=d\\1+d=ab\end{cases}}\)
\(\Rightarrow1+a+b=ab\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=2\)
\(\Rightarrow\left(a-1,b-1\right)=\left(1,2;2,1\right)\)
\(\Rightarrow\left(a,b\right)=\left(2,3;3,2\right)\)
\(\Rightarrow\hept{\begin{cases}d=4\\d=2\end{cases}\left(l\right)}\)
Tương tự các trường hợp còn lại