cho tam giác abc nhọn, các đường cao bd,ce cắt nhau ở h, k là hình chiếu của h trên bc
bh*bd=bk*bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
b: Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
góc KBH chung
=>ΔBKH đồng dạng với ΔBDC
=>BK/BD=BH/BC
=>BK*BC=BD*BH
Nếu tg ABC cân tại A
Dễ thấy \(\Delta AEC=\Delta ADB\left(ch-gn\right)\)
Do đó \(AE=AF\Rightarrow\Delta AEF\) cân tại A
\(\Rightarrow\widehat{AED}=\widehat{ADE}\)
Mà \(\left\{{}\begin{matrix}\widehat{AED}=\widehat{HEB}\\\widehat{ADE}=\widehat{CKD}\end{matrix}\right.\Rightarrow\widehat{HEB}=\widehat{CKD}\)
Mà \(\widehat{EHB}=\widehat{DKC}\left(=90^0\right);BE=CD\left(AB-AE=AC-AD\right)\)
Do đó \(\Delta BHE=\Delta CKD\left(ch-gn\right)\)
\(\Rightarrow BH=CK\)
Mà \(BH//CK\left(\perp HK\right)\)
Do đó BCKH là hbh
Mà \(\widehat{KHB}=90^0\) nên BCKH là hcn