chứng tỏ rằng 1/2^2 + 1/3^2 +...+1/100^2 <1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Co 1/2^2+1/3^2+...+1/100^2<1/1.2+1/2.3+...+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100<1
vay 1/2^2+...+1/100^2<1
Ta thấy: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};....;\frac{1}{100^2}<\frac{1}{99.100}\)
Cộng vế theo vế ta được: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\) \(=1-\frac{1}{100}<1\)
Do đó: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}<1\)
ta có
1/2^2 < 1/(1.2)= 1-1/2
1/3^2 <1/(2.3)=1/2-1/3
1/4^2 <1/(3.4)=1/3-1/4
......
1/100^2 < 1/99-1/100
cộng vế với vế ta được 1/2^2 +1/3^2+...< 1-1/2+1/2-1/3+....+1/99-1/100=1-1/100
=> ĐPCM
Ta có: 1/3^2<1/2.3;1/4^2<1/3.4;........
=>1/3^2+1/4^2+1/5^2+......+1/100^2
< 1/2.3+1/3.4+1/4.5+.....+1/99.100
=1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100
=1/2-1/100
=49/100
Mà 49/100<1/2
Nên 1/3^2+1/4^2+1/5^2+......+1/100^2<1/2
Đ ú n g nha......................
Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
Bạn hack nick mình thu ib dưới vs nha giúp mk chuyện này:))
Ta có:
Xét số a. Ta có a2 > (a - 1)(a + 1)
Thật vậy, (a - 1)(a + 1) = a(a + 1) - (a + 1) = a2 + a - a - 1 = a2 - 1 < a2
Suy ra \(\dfrac{1}{\left(a-1\right)\left(a+1\right)}>\dfrac{1}{a^2}\)
Ta có:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(< \dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{99.101}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{100}-\dfrac{1}{101}\right)\)
\(< \dfrac{3}{4}\)
Ko bt có sai chỗ nào ko....
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{100^2}< \frac{1}{99.100}\)
Cộng vế với vế ta được :
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy ta có đpcm