K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: =>x^2+4x-21=0

=>(x+7)(x-3)=0

=>x=3 hoặc x=-7

2: =>(2x-5-4)(2x-5+4)=0

=>(2x-9)(2x-1)=0

=>x=9/2 hoặc x=1/2

3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15

=>-9x^2+27x+9x^2+18x+9=15

=>18x=15-9-27=-21

=>x=-7/6

6: =>4x^2+4x+1-4x^2-16x-16=9

=>-12x-15=9

=>-12x=24

=>x=-2

7: =>x^2+6x+9-x^2-4x+32=1

=>2x+41=1

=>2x=-40

=>x=-20

a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)

\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)

\(\Leftrightarrow3x=3\)

hay x=1

Vậy: S={1}

b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)

\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)

\(\Leftrightarrow6x=-20\)

hay \(x=-\dfrac{10}{3}\)

c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)

\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)

\(\Leftrightarrow17x=17\)

hay x=1

2: \(3x\left(x-4\right)+2x-8=0\)

=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(3x+2\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)

3: 4x(x-3)+x2-9=0

=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)

=>\(\left(x-3\right)\left(4x+x+3\right)=0\)

=>\(\left(x-3\right)\left(5x+3\right)=0\)

=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)

4: \(x\left(x-1\right)-x^2+3x=0\)

=>\(x^2-x-x^2+3x=0\)

=>2x=0

=>x=0

5: \(x\left(2x-1\right)-2x^2+5x=16\)

=>\(2x^2-x-2x^2+5x=16\)

=>4x=16

=>x=4

12 tháng 2 2018

Ta có: \(2\left(x-1\right)-3\left(2x+2\right)-4\left(2x+3\right)=16\)

\(\Rightarrow2x-2-6x-6-8x-12=16\)

\(\Rightarrow2x-6x-8x=16+2+6+12\)

\(\Rightarrow-12x=36\)

\(\Rightarrow x=-3\)

Vậy x = -3

12 tháng 2 2018

2x-2- 6x -6 - 8x-12=16

2x-6x-8x=2+6+12+16

-12x=36

x= -3

a:

ĐKXĐ: x<>-1/2

Để \(\dfrac{2x^3+x^2+2x+2}{2x+1}\in Z\) thì

\(2x^3+x^2+2x+1+1⋮2x+1\)

=>\(2x+1\inƯ\left(1\right)\)

=>2x+1 thuộc {1;-1}

=>x thuộc {0;-1}

b:

ĐKXĐ: x<>1/3

 \(\dfrac{3x^3-7x^2+11x-1}{3x-1}\in Z\)

=>3x^3-x^2-6x^2+2x+9x-3+2 chia hết cho 3x-1

=>2 chia hết cho 3x-1

=>3x-1 thuộc {1;-1;2;-2}

=>x thuộc {2/3;0;1;-1/3}

mà x nguyên

nên x thuộc {0;1}

c: 

ĐKXĐ: x<>2

\(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\in Z\)

=>\(\left(x^2-4\right)\left(x^2+4\right)⋮\left(x-2\right)^2\left(x^2+4\right)\)

=>\(x+2⋮x-2\)

=>x-2+4 chia hết cho x-2

=>4 chia hết cho x-2

=>x-2 thuộc {1;-1;2;-2;4;-4}

=>x thuộc {3;1;4;0;6;-2}

 

b: =>2x=16/2=8

=>x=4

a: Sửa đề: (3/2)^2x-1=(3/2)^5x-4

=>2x-1=5x-4

=>-3x=-3

=>x=1