Tìm a,b thuộc Z,sao cho:\(\frac{9}{56}\)<\(\frac{a}{8}\)<\(\frac{b}{7}\)<\(\frac{13}{28}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a,b thuộc Z : 9/56 < a/8 < b/7 <13/28 .
=> 9/56 < 7a/56 < 8b/56 < 26/56 .
=> 9 < 7a < 8b < 26 .
Vì 9 < 8b < 26 nên 8b = 16 ; 24 ( vì 8b chia hết cho b )
=> b = 2 ; 3 .
Vì 9 < 7a < 26 nên 7a = 14 ; 21 ( vì 7a chia hết cho 7 )
=> a = 2 ; 3 .
Để 7a < 8b thì : b = 2 ; a = 2
b = 3 ; a = 3
Ta có: \(\frac{9}{56}<\frac{a}{8}<\frac{b}{7}<\frac{13}{28}\)
=> \(\frac{9}{56}<\frac{7a}{56}<\frac{8b}{56}<\frac{26}{56}\)
Nếu \(a=2\)thì \(b=3\)
Ta có : \(\frac{9}{56}<\frac{a}{8}<\frac{b}{7}<\frac{13}{28}\)
=> \(\frac{9}{56}<\frac{7a}{56}<\frac{8b}{56}<\frac{26}{56}\)
=> \(9<7a<8b<26\)
Vì a, b ∈ Z => 7a, 8b ∈ Z
=> 7a, 8b ∈ { 10 ; 11 ; 12 ; 13 ; 14 ; 15 ; 16 ; 17 ; 18 ; 19 ; 20 ; 21 ; 22 ; 23 ; 24 ; 25 }
=> 7a ∈ { 14 ; 21 } ; 8b ∈ { 16 ; 24 }
- Khi 7a = 14 => a = 2
- Khi 7a = 21 => a = 3
- Khi 8b = 16 => b = 2
- Khi 8b = 24 => b = 3
1)
a)
\(\frac{-5}{6}.\frac{120}{25}< x< \frac{-7}{15}.\frac{9}{14}\)
\(\frac{-1}{1}.\frac{20}{5}< x< \frac{-1}{5}.\frac{3}{2}\)
\(\frac{-20}{5}< x< \frac{-3}{10}\)
\(\frac{-40}{10}< x< \frac{-3}{10}\)
\(\Rightarrow Z\in\left\{-4;-5;-6;-7;-8;-9;-10;...;-39\right\}\)
\(a,\left(\frac{31}{20}-\frac{26}{45}\right)\cdot\left(\frac{-36}{35}\right)< x< \left(\frac{51}{56}+\frac{8}{21}+\frac{1}{3}\right)\cdot\frac{8}{13}\)
\(taco:\left(\frac{31}{20}-\frac{26}{45}\right)\cdot\left(\frac{-36}{35}\right)=\frac{35}{36}\cdot\frac{-36}{35}=-1\)
\(\left(\frac{51}{56}+\frac{8}{21}+\frac{1}{3}\right)\cdot\frac{8}{13}=\frac{13}{8}\cdot\frac{8}{13}=1\)
\(=>x=0\)
\(b,\frac{-5}{6}+\frac{8}{3}+\frac{29}{-3}< x< \frac{-1}{2}+2+\frac{5}{2}\)(dau <co dau gach ngang o duoi nha)
\(taco:\frac{-5}{6}+\frac{8}{3}+\frac{29}{-3}=\frac{-5}{6}+\frac{8}{3}+\frac{-29}{3}=\frac{-5}{6}+\frac{16}{6}+\frac{-58}{6}=\frac{-47}{6}=-7,8\)
\(\frac{-1}{2}+2+\frac{5}{2}=\frac{3}{2}+\frac{5}{2}=4\)
tu do \(=>x=-7,8;...;0;1;2;3;4\)
a)\(\frac{-5}{6}\).\(\frac{120}{25}\)<x<\(\frac{-7}{15}\).\(\frac{9}{14}\)
-4 <x<\(\frac{-3}{10}\)
\(\frac{-40}{10}\)< x <\(\frac{-3}{10}\)=>x E {-39:-38:-37:.....:-4}
b)\(\left(\frac{-5}{3}\right)^3\)<x<\(\frac{-24}{35}.\frac{-5}{6}\)
\(\frac{-875}{189}< x< \frac{108}{189}\)
=> x E {\(\frac{-874}{189},\frac{-873}{189},......,\frac{107}{189}\)}
a) Ta có:+) \(\frac{12}{16}=\frac{-x}{4}\) <=> 12.4 = 16.(-x)
<=> 48 = -16x
<=> x = 48 : (-16) = -3
+) \(\frac{12}{16}=\frac{21}{y}\) <=> 12y = 21.16
<=> 12y = 336
<=> y = 336 : 12 = 28
+) \(\frac{12}{16}=\frac{z}{-80}\) <=> 12. (-80) = 16z
<=> -960 = 16z
<=> z = -960 : 16 = -60
b) Ta có: \(\frac{x+3}{7+y}=\frac{3}{7}\) <=> (x + 3).7 = 3(7 + y)
<=> 7x + 21 = 21 + 3y
<=> 7x = 3y
<=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{7}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.3=6\\y=2.7=14\end{cases}}\)
Vậy ...
\(\frac{9}{56}<\frac{7.a}{7.8}<\frac{8.a}{7.8}<\frac{13.2}{28.2}\Leftrightarrow\frac{9}{56}<\frac{7a}{56}<\frac{8a}{56}<\frac{26}{56}\)
Hay
9 < 7a < 8b <26
=> a = 2 ; b= 3