Cho tam giác vuông ABC tai A co goc ACB bang 36 do trên canh AC lay diem M;N sao cho goc ABM bang goc MBN bang NBC tu M ke duong thang vuong goc voi BN cat BC tai K.So sanh AM;MN;NC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
Ta có: ^ACD=^ACB - ^BCD (1). Do tam giác ABC vuông cân => ^ABC=^ACB=450
Thay ^ACB=450 và ^BCD=150 vào (1): ^ACD=450-150=300.
Xét tam giác DAC: ^DAC=900 => ^ADC+^ACD=900 => ^ADC=900-^ACD=900-300=600 => ^ADC=600.
Tam giác ABC vuông cân tại A => AB=AC.
Xét tam giác EAB và tam giác DAC có:
AE=AD
^EAB=^DAC=900 => Tam giác EAB=Tam giác DAC (c.g.c)
AB=AC
=> ^AEB=^ADC (2 góc tương ứng). Mà ^ADC=600 => ^AEB=600.
Xét tam giác EAD: AD=AE, ^EAD=900 => Tam giác EAD vuông cân tại A => ^ADE=^AED=450.
Lại có: ^AED+^BED=^AEB => ^BED=^AEB-^AED=600-450=150.
Vậy ^BED=150.
Sai đề thì phải N thuộc AC mới đúng.
a. Chu vi tam giác ABC = 6+8+10=24cm
Diện tích tam giác ABC =1/2.6.8 = 24 cm2
b.
A B C M N E K
từ E kể EK vuông góc AC tại K
Diện tích tam giác MNE = diện tích hình thang vuông MAKE - diện tích 2 tam giác AMN và NKE
EK//AB, E trung điểm BC => EK=1/2AB = 3cm, K là trung điểm AC=> AK=4cm =>NK=AN=2cm
Diện tích H.thang MAKE = 1/2.(3+4).4=14 cm2
Diện tích tam giac AMN = 1/2.2.4 = 4 cm2 và dt tam giác NKE=1/2.2.3 = 3cm2
=>dt tam giac MNE = 14-4-3= 7 cm2
a: \(\widehat{HAB}=90^0-60^0=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đó: ΔAHI=ΔADI
Ta có: ΔAHD cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: Xét ΔAHK và ΔADK có
AH=AD
\(\widehat{HAK}=\widehat{DAK}\)
AK chung
Do đó: ΔAHK=ΔADK
Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)
=>DK//AB
a) Xét tam giác vuông ABC có :
Góc ACB = \(90^o-35^o\)
Góc ACB = \(55^o\)
b) Xét tam giác ABE và tam giác DBE có
Góc BAE= góc BDE \(\left(=90^o\right)\)
AB = BD (giả thiết)
BE là cạnh chung
Do đó tam giác ABE = tam giác DBE (cạnh huyền - cạnh góc vuông)
c) Xét tam giác EKA và tam giác ECD có
góc KAE = góc CDE \(\left(=90^o\right)\)
EA = ED (tam giác ABE = tam giác DBE)
góc KEA = góc CED ( đối đỉnh )
Do đó tam giác EKA = tam giác ECD (cạnh góc vuông - góc nhọn)
\(\Rightarrow EK=EC\) (hai cạnh tương ứng)
d) Ta có:
tam giác ABE vuông nên góc AEB là góc nhọn
\(\Rightarrow\) góc BEC là góc tù
\(\Rightarrow\) CB>EB (trong tam giác tù cạnh đối diện với góc tù là cạnh lớn nhất) (1)
Ta lại có :
tam giác KAE vuông tại A nên góc KEA là góc nhọn
\(\Rightarrow\) góc KEC là góc tù
\(\Rightarrow\) CK>EK (trong tam giác tù cạnh đối diện với góc tù là cạnh lớn nhất) (2)
Từ (1) và (2) ta có
EB+EK<CB+CK (đpcm)