Tìm dư trong phép chia
x^100 -2x^51+1 cho x^2-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
vì đa thức chia là Q(x) bậc hai nên đa thức dư có dạng ax + b.
khi đó P(x) = Q(x). K(x) + ax +b.
lại có Q(x) có 2 nghiệm là 1 và - 1 nên ta có:
P(1) = a + b
P(-1) = -a + b.
mà P(1) = 0; P(-1) = 4. thay vào trên giải hệ ta tìm được a và b.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Áp dụng đinh lý Bê-du, ta có f(x) chia x + 1 dư \(f\left(-1\right)\); bạn tự thay x = - 1 và tính kết quả đó chính là số dư.
b) Dùng phương pháp gán giá trị riêng :
Đặt \(f\left(x\right)=\left(x^2-1\right).Q\left(x\right)+R\left(x\right)\)
Do đa thức chia có bậc không quá 2 nên đa thức dư có bậc không quá 1, nên đặt \(R\left(x\right)=ax+b\)
Thay vào và có :
\(x^{100}-x^{50}+2.x^{25}-4=\left(x^2-1\right)Q\left(x\right)+ax+b\)
Lần lượt gán cho x giá trị 1 và -1
\(f\left(1\right)=1-1+2.1-4=0.Q\left(x\right)+a.1+b\)
\(\Rightarrow a+b=-2\)
\(f\left(-1\right)=1-1+2.\left(-1\right)-4=0.Q\left(x\right)+a.\left(-1\right)+b\)
\(\Rightarrow b-a=-6\)
\(\Rightarrow b=\frac{\left(-2\right)+\left(-6\right)}{2}=-\frac{8}{2}=-4\)
\(a=\left(-4\right)-\left(-6\right)=2\)
Do đó dư là \(2x-4\)
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng định lý bơ-zu nhé
Đa thức f(x) chia cho đa thức x-a thì có số dư là: f(a)
Áp dụng bài này số dư là: F(-1)