tìm gtnn:
(x-9)^2+|y-3|-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: a, Tìm GTNN của A = ∣x - 3∣ + ∣x - 4∣ + ∣x - 7∣ b, Tìm x, y thoả mãn ∣x - 2∣ + ∣ y²⁰ + 9∣ = 9
a.
\(A=\left|x-3\right|+\left|x-4\right|+\left|x-7\right|\)
\(A=\left|x-3\right|+\left|7-x\right|+\left|x-4\right|\)
Áp dụng BĐT trị tuyệt đối:
\(A\ge\left|x-3+7-x\right|+\left|x-4\right|\)
\(\Rightarrow A\ge4+\left|x-4\right|\ge4\)
\(\Rightarrow A_{min}=4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)\ge0\\x-4=0\end{matrix}\right.\) \(\Rightarrow x=4\)
Câu b đã giải bên dưới
\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)
Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)
Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
a) |x+2|+|3-x|>=|x+2+3-x|=|5|=5
dau "=" xay ra khi va chi khi (x+2)(3-x)>=0
=>x>=-2 hoặc x<=3
vạy GTNN cua bieu thuc la 5 khi va chi khi ...
b)cau b tuong tu
c) vi |x+1|>=0
|y+2|>=0
=>|x+1|+|y+2|>=0 dau "=" xay ra khi va chi khi x+1=0 va y+2=0
=>x=-1 va y=-2
vay GTNN cua bieu thuc la 0 khi va chi khi x=-1 va y=-2
1) Vì \(\left|x\right|\ge0\left(\forall x\right)\Rightarrow3.\left|x\right|\ge0\Rightarrow A=3.\left|x\right|-2=3.\left|x\right|+\left(-2\right)\ge-2\)
Dấu bằng xảy ra khi: |x| = 0 <=> x = 0
Vậy Amin = -2 khi và chỉ khi x = 0
2) Vì \(\left|x-8\right|\ge0\left(\forall x\right)\Rightarrow B=\left|x-8\right|+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> |x-8| = 0 <=>x - 8 = 0 <=> x = 8
Vậy Bmin = 3/4 khi và chỉ khi x = 8
3) Vì \(\left(x-6\right)^{10}\ge0\left(\forall x\right);\left|x-y\right|\ge0\left(\forall x;y\right)\)
\(\Rightarrow\left(x-6\right)^{10}+\left|x-y\right|+9\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-6\right)^{10}=0\\\left|x-y\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-6=0\\x-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\x=y\end{cases}\Leftrightarrow}x=y=6}\)
Vậy GTNN của biểu thức = 9 khi và chỉ khi x = y = 6
(x-9)^2 + |y-3| + 1
nhận xét
(x-9)^2 >=0
|y-3| >=0
=> (x-9)^2 +|y-3| + 1 >=1
vậy giá trị nhỏ nhất là 1
tại x = 9
và y = 3