thư thách thức:
tìm a biết a x a + a + 1 =a
hahahaha...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=|x-2001|+|x-1|=|2001-x|+|x-1|\geq |2001-x+x-1|=2000$
Vậy $A_{\min}=2000$. Giá trị này đạt được khi $(2001-x)(x-1)\geq 0$
$\Leftrightarrow 2001\geq x\geq 1$
\(A=1\times2+2\times3+3\times4+...+19\times20\)
\(A\times3=3\times\left(1\times2+2\times3+3\times4+...+19\times20\right)\)
\(A\times3=1\times2\times3+2\times3\times3+3\times4\times3+...+19\times20\times3\)
\(A\times3=1\times2\times3+2\times3\times\left(4-1\right)+3\times4\times\left(5-2\right)+....+19\times20\times\left(21-18\right)\)
\(A\times3=1\times2\times3-1\times2\times3+2\times3\times4-2\times3\times4+3\times4\times5+...+19\times20\times21\)
\(A\times3=\left(1\times2\times3-1\times2\times3\right)+\left(2\times3\times4-2\times3\times4\right)+...+\left(18\times19\times20-18\times19\times20\right)+19\times20\times21\)
\(A\times3=19\times20\times21\)
\(A\times3=7980\)
a x 13 = ab
=> a x 13 = 10 x a + b
=> 3 x a = b
=> số tự nhiên ab lớn nhất là 39
Số ab lớn nhất thì tức là số 2 chữ số còn gì nữa. => ab =99
\(\left(\dfrac{1}{x+2\sqrt{x}}-\dfrac{1}{\sqrt{x}+2}\right):\dfrac{1-\sqrt{x}}{x+4\sqrt[]{x}+4}\left(đk:x>0,x\ne1\right)\)
\(=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt[]{x}+2\right)^2}{1-\sqrt{x}}=\dfrac{\sqrt{x}+2}{\sqrt{x}}\)
Biểu thức \(=\dfrac{5}{3}\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}}=\dfrac{5}{3}\)
\(\Leftrightarrow3\sqrt{x}+6=5\sqrt{x}\Leftrightarrow2\sqrt{x}=6\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)
Ta đưa về phép nhân các số tự nhiên:
ab x cc x abc = abcabc
ab x cc x abc = abc x 1001
ab x cc = 1001
ab x cc = 91 x 11
Vậy ab = 91; cc = 11
Thay vào ta có 9,1 x 1,1 x 9, 11 = 91, 1911
a x a + a + 1 = a
a x a = a - 1 - a
a2=-1
=> ko có giá trị của a
a = -1
k mik nha