K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

Ta có : 

\(\frac{1}{n+1}>\frac{1}{n+n}=\frac{1}{2n}\)

\(\frac{1}{n+2}>\frac{1}{n+n}=\frac{1}{2n}\)

\(\frac{1}{n+3}>\frac{1}{n+n}=\frac{1}{2n}\)

......................

\(\frac{1}{n+n}=\frac{1}{n+n}=\frac{1}{2n}\)

Cộng vế với vế ta được :

\(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+....+\frac{1}{n+n}>\frac{1}{2n}+\frac{1}{2n}+\frac{1}{2n}+....+\frac{1}{2n}\)( có n số \(\frac{1}{2n}\) )

\(\Rightarrow\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+....+\frac{1}{n+n}>\frac{n}{2n}=\frac{1}{2}\) ( đpcm )

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với

13 tháng 4 2016

biểu thức = mấy ?>!

19 tháng 3 2016

Ta có: Vế phải bằng: \(\frac{1}{n}\) - \(\frac{1}{n+1}\) = \(\frac{n+1}{n\left(n+1\right)}\) - \(\frac{n}{n\left(n+1\right)}\) = \(\frac{1}{n\left(n+1\right)}\)\(\frac{1}{n}\) - \(\frac{1}{n+1}\) =>đpcm.

19 tháng 6 2018

ta có: \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)

\(\Rightarrow1-\frac{1}{1+2+3+...+n}=1-1:\frac{n.\left(n+1\right)}{2}=1-\frac{2}{n.\left(n+1\right)}\)

\(=\frac{n.\left(n+1\right)-2}{n.\left(n+1\right)}=\frac{n^2+n-2}{n.\left(n+1\right)}=\frac{\left(n+2\right).\left(n-1\right)}{n.\left(n+1\right)}\) (*)

Từ (*) 

\(\Rightarrow1-\frac{1}{1+2}=\frac{4.1}{2.3};1-\frac{1}{1+2+3}=\frac{5.2}{3.4};...;1-\frac{1}{1+2+3+...+n}=\frac{\left(n+2\right).\left(n-1\right)}{n.\left(n+1\right)}\)

\(\Rightarrow E=\frac{4.1}{2.3}.\frac{5.2}{3.4}...\frac{\left(n+2\right).\left(n-1\right)}{n.\left(n+1\right)}=\frac{4.1.5.2...\left(n+1\right).\left(n-2\right).\left(n+2\right).\left(n-1\right)}{2.3.3.4....\left(n-1\right).n.n.\left(n+1\right)}\)\(=\frac{n+2}{n.n}\)

\(\Rightarrow\frac{E}{F}=E:F=\left(\frac{n+2}{n.n}\right):\frac{n+2}{n}=\frac{n+2}{n.n}.\frac{n}{n+2}=\frac{1}{n}\)

\(\Rightarrow\frac{E}{F}=\frac{1}{n}\)

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)Tính giá trị D = x ^2017 + y^2017 + z^2017Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)bài 3 : Cho a, b, c khác nhau thỏa mãn :\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)Chứng minh : 2 phân...
Đọc tiếp

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị D = x ^2017 + y^2017 + z^2017
Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)
bài 3 : Cho a, b, c khác nhau thỏa mãn :
\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)
Chứng minh : 2 phân thức có giá trị = 1 và 1 phân thức có giá trị = -1
Bài 4 : Cho A = \(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
a, Rút gọn A
b, Cm : Nếu n thuộc Z thì A tối giản
Bài 5 : Cho n thuộc Z, n nhỏ hơn hoặc = 1
CMR : 1^3 + 2^3 + 3^3 +....+ n^3 = \(\frac{n^2\left(n+1\right)^2}{4}\)
Bài 6 : Cho M =\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
N =\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
a, Cm : nếu M = 1 thì N = 0
b, Cm : Nếu N = 0 thì có nhất thiết M = 1 ko ?

0