K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.

a: Thay x=2 vào B, ta được:

\(B=\dfrac{2}{\sqrt{2}-1}=2\sqrt{2}+2\)

 

a: ĐKXĐ: x<>-2/3

b: F=0

=>8-2x=0

=>x=4

d: F<0

=>(2x-8)/(3x+2)>0

=>x>4 hoặc x<-2/3

6 tháng 7 2017

Với  x ≥ 0 ,   x ≠ 1 ,   x ≠ 4 ta có:

Q = x + 27 . P x + 3 x − 2 = x + 27 x + 3 = x − 9 + 36 x + 3 = x − 3 + 36 x + 3 = − 6 + x + 3 + 36 x + 3 ≥ − 6 + 12 = 6

6 tháng 11 2017

4 tháng 10 2019

a,  V = 1 x + 2 + 1 x − 2 x + 2 x = x − 2 + x + 2 x + 2 x − 2 x + 2 x = 2 x − 2

b, V = 1 3 ⇔ 2 x − 2 = 1 3 ⇔ x − 2 = 6 ⇔ x = 64   ( t / m )

\(B=\dfrac{1}{x+\sqrt{x}}+\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{x-\sqrt{x}}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1+2x-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2x-2}{\sqrt{x}\left(x-1\right)}=\dfrac{2}{\sqrt{x}}\)

29 tháng 3 2019

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Đề không hiển thị hai biểu thức A và B. Bạn xem lại nhé.

29 tháng 7 2023

a) \(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(P=\left(\dfrac{x+2}{\left(\sqrt{x}\right)^3-1^3}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)

\(P=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)\(P=\left(\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)

\(P=\dfrac{2}{x+\sqrt{x}+1}\)

b) Mà với \(x\ge0\) và \(x\ne1\) thì 

\(x+\sqrt{x}+1\ge0\) và \(2>0\) nên \(P>0\)

a: \(P=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2}=\dfrac{2}{x+\sqrt{x}+1}\)

b: x+căn x+1+1>=1>0

2>0

=>P>0 với mọi x thỏa mãn x>=0 và x<>1