K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

1) để 2017/n+3 lớn nhất thì n+3 bé nhất và là số tự nhiên

suy ra n+3=1(vì mẫu không thể là 0)

suy ra n=-2 

Vậy n=-2

2)tương tự

Nhớ bấm đúng cho mình nha

8 tháng 5 2017

Câu 1:

a) Gọi biểu thức đó là A

Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

Dựa vài công thức ta có ;

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{19}-\frac{1}{20}\)

\(A=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)

b) Gọi biểu thức đó là S

\(S=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right).....\left(-\frac{2016}{2017}\right)\)

\(S=-\left(\frac{1.2.3.4....2016}{2.3.4.5....2017}\right)=-\left(\frac{1}{2017}\right)=-\frac{1}{2017}\)

Rất tiếc nhưng phần c mink ko biết làm, để mink nghĩ đã

Câu 2 :

a) \(\frac{5}{n+1}\)

Để 5/n+1 là số nguyên thì n + 1 là ước nguyên của 5

n+1=1 => n = 0

n + 1 =5 => n = 4

n+1=-1 => n =-2

n+1 = -5 => n = -6

b) \(\frac{n-6}{n+1}=\frac{n+1-7}{n+1}=1-\frac{7}{n+1}\)

Để biểu thức là số nguyên thì n + 1 là ước của 7

n + 1 = 1 => n= 0

n+1=7=> n =6

n + 1 = -7 => n =-8

n+1=-1 => n= -2

c)  \(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+6}{n+1}=2+\frac{6}{n+1}\)

Để biểu thức là số nguyên thì n+1 là ước của 6

n+1 =1-16-6
n = 0-25-7

Từ đó KL giá trị n

CÂU 3 :

b) \(A=\frac{x-1}{x+2}=\frac{x+2-3}{x+2}=1-\frac{2}{x+2}\)

x+2=1-12-2
x =-1-30-4

Rồi bạn thử từng x khi nào thấy A = 2 thì chọn nha!!

Ai thấy đúng thì ủng hộ nha !!!

8 tháng 5 2017

câu 1 :

a) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19+20}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)

\(=\frac{1}{2}+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{19}+\frac{1}{19}\right)-\frac{1}{20}\)

\(=\frac{1}{2}+0+0+0+...+0-\frac{1}{20}\)

\(=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)

b) \(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{2017}-1\right)\)

\(=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)...\left(-\frac{2016}{2017}\right)\)

Vì phép nhân có thể rút gọn 

Nên \(-1.\frac{-1}{2017}=\frac{1}{2017}\)

Câu 2 : 

a) Ta có : \(\frac{5}{n+1}\)

Để \(\frac{5}{n+1}\in Z\Leftrightarrow5⋮n+1\Leftrightarrow n+1\inƯ_{\left(5\right)}=\){ -1; 1; -5; 5 }

Với n + 1 = -1 => n =  -1 - 1 = - 2 ( TM )

Với n + 1 = 1 => n = 1 - 1 = 0 ( TM )

Với n + 1 = - 5 => n = - 5 - 1 = - 6 ( TM )

Với n + 1 = 5 => n = 5 - 1 = 4 ( TM )

Vậy Với n \(\in\){ - 2; 1; - 6; 4 } thì 5 \(⋮\)n + 1

Còn câu b nữa tương tự nha

" TM là thỏa mản "

9 tháng 2 2020

Để X dương thì (n-1) và (2017-n) cùng dấu (X khác 0 => n khác 1 và để X tồn tại thì n khác 2017)

+ TS và MS cùng âm

TS âm => n < 1

MS âm => n > 2017 (vô lí)

+ TS và MS cùng dương 

TS dương => n > 1

MS dương => n < 2017

=> 1 < n < 2017

Mà n nguyên => n LN là 2016 và n NN là 2

7 tháng 1 2018

giá trị lớn nhất là 2016

giá trị nhỏ nhất là 1

26 tháng 2 2017

Để A là số nguyên thì 4n + 1 chia hết cho 2n + 3

<=> 4n + 1 chai hết cho 4n + 6

=> 4n + 6 - 5 chia hết 4n + 6

=>5 chia hết 4n + 6

=> 4n + 6 thuôc Ư(5) = {-1;1;-5;5}

Ta có bảng

4n + 6-5-115
4n-11-7-511
n  -1 
30 tháng 6 2016

Để A có giá trị nguyên thì 2n-1 chia hết cho n-3

2n-1

=2n-6+5

=2.(n-3)+5

Do 2.(n-3) luôn chia hết cho n-3 nên 5 chia hết cho n-3

n-3 thuộc 1;5;-1;-5

Bạn kẻ bảng ra và thử các trường hợp nhé,sau cùng ta được:

n thuộc 4;8;2;-2

b)Để A có giá trị nguyên lớn nhất thì n lớn nhất ở tử,bé nhất ở mẫu,Tức mẫu bằng 1,suy ra n=4,mẫu không âm được vì nếu âm hoặc cả 2 âm không mang lại giá trị lớn nhất

Cách tốt nhất thử các n ra rồi so sánh giá trị.

Chúc bạn học tốt^^

30 tháng 6 2016

Để A nguyên thì 

2n - 1 chia hết n - 3

<=> 2n - 6 + 5 chia hết n - 3

<=> 2.(n-3) + 5 chia hết n - 3

=> 5 chia hết n - 3 

=> n - 3 thuộc Ư(5) = {-1;1;-5;5}

=> n = 2;4;-1;8

3 tháng 1 2017

Xem lại cái đề thử đúng chưa nhé

3 tháng 1 2017

\(U\left(n\right)=n^3-n^2-7n+1\)

U(0)=1;U(2)==-9;U(3)=-1;U(4)=21

Đặt n=(p+4) {xét luôn dương đỡ loạn)

\(U\left(p\right)=p^3+11p^2+40p+21\) (*)Với P thuộc N => U(P) luôn dương 

\(U\left(p\right)=p^3+2p^2+p+\left(9p^2+39p+21\right)\)(**)

\(U\left(p\right)=p\left(p+1\right)^2+\left(9p^2+39p+21\right)\)(***)

với p=3 U(3)=27+11.9+40.3+21=89 nguyên tố (nhận)

với p> 3 p=3k hiển nhiên (**) U(p) không nguyên tố

với p=3k+2=> (p+1)=3k+3 chia hết cho 3=> U(p) không nguyên tố

với p=3k+1=>p(p+1)^2 chia 3 dư 1

xét tiếp:

với k =2t+1 hiển nhiên p chẵn => (***) H(p) chia hết cho 2 loại

=> P có dạng 6k+1: với k=1=>P=7 \(\frac{U\left(7\right)}{7}=169=13^2\)Loại

"thôi quá dài -xét tiếp có lẽ => U(p) hợp số nhưng mỏi lắm:

Tạm chấp nhận p=3; n=7  (c/m hoàn chỉnh hoặc tìm ra con nào lớn hơn 89 dành cho @Ailibaba)