K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 11 2022

Gọi A, B lần lượt là giao điểm của d với Ox và Oy

\(\Rightarrow y_A=0\Rightarrow\left(m^2+2\right)x_A+1=0\Rightarrow x_A=-\dfrac{1}{m^2+2}\Rightarrow OA=\left|x_A\right|=\dfrac{1}{m^2+2}\)

\(x_B=0\Rightarrow y_B=\left(m^2+2\right).0+1=1\Rightarrow OB=\left|y_B\right|=1\)

\(\Rightarrow S_{\Delta OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}.\dfrac{1}{m^2+2}.1=\dfrac{1}{8}\)

\(\Rightarrow m^2+2=4\Rightarrow m^2=2\)

\(\Rightarrow m=\pm\sqrt[]{2}\)

Gọi A,B lần lượt là giao của (d) với trục Ox và Oy

Tọa độ A là:

y=0 và (2m+1)x-1=0

=>x=1/(2m+1) và y=0

=>OA=1/|2m+1|

Tọa độ B là:

x=0 và y=-1

=>OB=1

Theo đề, ta có: S OAB=1/2

=>1/2*OA*OB=1/2

=>1/|2m+1|=1

=>|2m+1|=1

=>2m+1=1 hoặc 2m+1=-1

=>m=-1 hoặc m=0

11 tháng 3 2016

la 64

duyet nhanh di

NV
11 tháng 4 2021

Gọi A và B lần lượt là giao điểm của d với Ox và Oy

\(\Rightarrow A\left(-\dfrac{1}{m^2+2};0\right)\) ; \(B\left(0;1\right)\) \(\Rightarrow OA=\dfrac{1}{m^2+2}\) ; \(OB=1\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{8}\Leftrightarrow OA.OB=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{1}{m^2+2}=\dfrac{1}{4}\Rightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)

20 tháng 12 2020

ĐK: \(m\ne-2\)

\(x=0\Rightarrow y=2m+4\)

\(y=0\Rightarrow x=-2\)

\(S=\dfrac{1}{2}.2.\left|2m+4\right|=9\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{13}{2}\\m=\dfrac{5}{2}\end{matrix}\right.\)

NV
13 tháng 4 2021

Để đồ thị hàm số tạo với 2 trục 1 tam giác \(\Rightarrow m\ne\left\{1;2\right\}\)

Gọi A và B lần lượt là giao điểm của ĐTHS với Ox và Oy

\(\Rightarrow A\left(-\dfrac{m-2}{m-1};0\right)\) ; \(B\left(0;m-2\right)\)

\(\Rightarrow OA=\left|-\dfrac{m-2}{m-1}\right|=\left|\dfrac{m-2}{m-1}\right|\) ; \(OB=\left|m-2\right|\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=2\Rightarrow OA.OB=4\)

\(\Leftrightarrow\left|\dfrac{m-2}{m-1}\right|.\left|m-2\right|=4\Leftrightarrow\left(m-2\right)^2=4\left|m-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2-4m+4=4\left(m-1\right)\\m^2-4m+4=-4\left(m-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2-8m+8=0\\m^2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=4\pm2\sqrt{2}\\m=0\end{matrix}\right.\)

13 tháng 12 2023

Gọi A,B lần lượt là giao điểm của (d) với trục Ox và Oy

Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(2m+1\right)x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x\left(2m+1\right)=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x=\dfrac{2}{2m+1}\end{matrix}\right.\)

=>\(A\left(\dfrac{2}{2m+1};0\right)\)

\(OA=\sqrt{\left(\dfrac{2}{2m+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{2}{2m+1}\right)^2}=\dfrac{2}{\left|2m+1\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(2m+1\right)x-2=0\cdot\left(2m+1\right)-2=-2\end{matrix}\right.\)

=>B(0;-2)

\(OB=\sqrt{\left(0-0\right)^2+\left(-2-0\right)^2}=\sqrt{0+4}=2\)

Vì Ox\(\perp\)Oy

nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot2\cdot\dfrac{2}{\left|2m+1\right|}=\dfrac{2}{\left|2m+1\right|}\)

Để \(S_{OAB}=1\) thì \(\dfrac{2}{\left|2m+1\right|}=1\)

=>|2m+1|=2

=>\(\left[{}\begin{matrix}2m+1=2\\2m+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=1\\2m=-3\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)