cho hai số tự nhiên liên tiếp a và b (0<a<b)
sao cho 1/b<8/45<1/a khi đó a + b là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=2^1+2^2+...+2^{20}\)
nên \(A=2^{20}-1\)
Vậy: A và B là hai số tự nhiên liên tiếp
\(2A=2+2^2+2^3+...+2^{20}\\ \Leftrightarrow2A-A=2+2^2+...+2^{20}-1-2-2^2-...-2^{19}\\ \Leftrightarrow A=2^{20}-1\)
Mà \(B=2^{20}\) nên ta có đpcm
a/ \(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}.\)
\(2n+7⋮n+1\) khi \(5⋮n+1\) hay n+1 là USC của 5 => n+1={-5;-1;1;5} => n={-6;-2;0;4}
b/
\(2A=2+2^2+2^3+2^4+...2^{2019}\)
\(\Rightarrow A=2A-A=2^{2019}-1\)
=> A, B là 2 số tự nhiên liên tiếp
A = { 10;11;12;12.....}
B= { 0 ; 2 ;4 ;6 ;....;70 }
C= {51;53;55;...;117;119}
D= Ø
\(2A=2^1+2^2+2^3+2^4+...+2^{2010}.\)
\(A=2A-A=2^{2010}-2^0=2^{2010}-1\)
=> A và B là 2 số tự nhiên liên tiếp
Ta có: A=1+2+22+...+22009
=>2A=2+22+23+....+22010
=>2A-A=A=(2+22+23+...+22010)-(1+2+22+...+22009)
=>A=22010-1
=>A và B là 2 số tự nhiên liên tiếp (đpcm)
\(A=1+2+2^2+2^3+...+2^{2022}\)
\(2A=2+2^2+2^3+...+2^{2023}\)
\(2A-A=\left(2-2\right)+\left(2^2-2^2\right)+...+\left(2^{2023}-1\right)\)
\(A=2^{2023}-1\)
Mà: \(2^{2023}-1\) và \(2^{2023}\)
Là hai số tự nhiên liên tiếp nên:
A và B là hai số tự nhiện liên tiếp