Cho hình thoi ABCD. Trên tia đối của BA lấy điểm M, trên tia đối của CB lấy điểm N, trên tia đối của DC lấy điểm P và trên tia đối của AD lấy điểm Q sao cho BM = CN = DP = AQ . a. CM : MNPQ là hình bình hành b. CM : hình bình hành MNPQ và hình thoi ABCD có cùng 1 tâm đối xứng c. Hình thoi ABCD có điều kiện gì để MNPQ là hình vuông ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét △ ANK và △ BKL :
AN = BK (gt)
∠ A = ∠ B = 90 0
AK = BL (vì AB = BC, BK = CL)
Do đó △ ANK = △ BKL (c.g.c)
⇒ NK = KL (1)
Xét △ BKL và △ CLM:
BK = CL (gt)
∠ B = ∠ C = 90 0
BL = CM (vì BC = CD, CL = DM)
Do đó: △ BKL = △ CLM (c.g.c)
⇒ KL = LM (2)
Xét △ CLM và △ DMN :
CL = DM (gt)
∠ C = ∠ D = 90 0
CM = DN (vì CD = DA, DM = AN)
Do đó: △ CLM = △ DMN (c.g.c)
⇒ LM = MN (3)
Từ (1), (2) và (3) ⇒ NK = KL = LM = MN
Tứ giác MNKL là hình thoi
△ ANK = △ BKL ⇒ ∠ (ANK) = ∠ (BKL)
Trong tam giác ANK có A là góc vuông ⇒ ∠ (ANK) + ∠ (AKN) = 90 0
⇒ ∠ (BKL) + ∠ (AKN) = 90 0 hay ∠ (NKL) = 90 0
Vậy tứ giác MNKL là hình vuông.
1:
ta có:ABCD là hình thoi
=>\(\widehat{BAD}=\widehat{BCD};\widehat{ABC}=\widehat{ADC}\)
Ta có: \(\widehat{BAD}+\widehat{EAH}=180^0\)(hai góc kề bù)
\(\widehat{BCD}+\widehat{FCD}=180^0\)(hai góc kề bù)
mà \(\widehat{BAD}=\widehat{BCD}\)
nên \(\widehat{EAH}=\widehat{FCD}\)
Ta có: \(\widehat{ABC}+\widehat{EBC}=180^0\)(hai góc kề bù)
\(\widehat{ADC}+\widehat{ADG}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ADC}\)
nên \(\widehat{EBC}=\widehat{ADG}\)
Ta có: \(DA+AH=DH\)
\(AB+BE=AE\)
\(BC+CF=BF\)
\(CD+DG=CG\)
mà DA=AB=BC=CD và AH=BE=CF=DG
nên DH=AE=BF=CG
Xét ΔHAE và ΔFCG có
HA=FC
\(\widehat{HAE}=\widehat{FCG}\)
AE=CG
Do đó: ΔHAE=ΔFCG
=>HE=FG
Xét ΔHDG và ΔFBE có
DH=BF
\(\widehat{HDG}=\widehat{BFE}\)
DG=BE
Do đó: ΔHDG=ΔFBE
=>HG=FE
Xét tứ giác GHEF có
GH=EF
GF=HE
Do đó: GHEF là hình bình hành
2: Gọi O là giao điểm của AC và BD
Ta có: ABCD là hình thoi
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét tứ giác AHCF có
AH//CF
AH=CF
Do đó: AHCF là hình bình hành
=>AC cắt HF tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểmcủa HF
Ta có: EHGF là hình bình hành
=>EG cắt HF tại trung điểm của mỗi đường
mà O là trung điểm của HF
nên O là trung điểm của EG
=>Hình bình hành EHGF và hình thoi ABCD có chung tâm
1: DH=DA+AH
CG=CD+DG
BF=BC+CF
AE=AB+BE
mà DA=CD=BC=AB và AH=DG=CF=BE
nên DH=CG=BF=AE
góc ADG=180 độ-góc ADC
góc EBF=180 độ-góc ABC
mà góc ADC=góc ABC
nên góc ADG=góc EBF
góc EAB=180 độ-góc BAD
góc GCF=180 độ-góc BCD
mà góc BAD=góc BCD
nên góc EAB=góc GCF
Xét ΔHDG và ΔFBE có
HD=FB
góc HDG=góc FBE
DG=BE
Do đó: ΔHDG=ΔFBE
=>HG=FE
Xét ΔHAE và ΔFCG có
HA=FC
góc HAE=góc FCG
AE=CG
Do đó: ΔHAE=ΔFCG
=>HE=FG
Xét ΔADG và ΔCBE có
AD=CB
góc ADG=góc CBE
DG=BE
Do đó: ΔADG=ΔCBE
=>AG=CE
Xét tứ giác EHGF có
EH=FG
EF=GH
Do đó: EHGF là hình bình hành
2:
Gọi O là giao của AC và BD
ABCD là hình thoi
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét tứ giác AGCE có
AG=CE
AE=CG
Do đó: AGCE là hình bình hành
=>AC cắt GE tại trung điểm của mỗi đường
=>O là trung điểm của GE
GHEF là hình bình hành
=>GE cắt HF tại trung điểm của mỗi đường
=>O là trung điểm của HF
=>ĐPCM
3:
ABCD là hình vuông
=>góc BAD=góc ADC=90 độ
Xét ΔHAE vuông tại A và ΔGDH vuông tại D có
HA=GD
AE=DH
Do đó: ΔHAE=ΔGDH
=>HE=GH
Xét hình bình hành EHGF có HE=GH
nên EHGF là hình thoi