tìm x : 2x + 2x+1+ 2x+2+ ......+ 2x+140 = 22020- 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>31-x=60
=>x=-29
b: =>(x-140):35=280-270=10
=>x-140=350
=>x=490
c: =>(1900-2x):35=48
=>1900-2x=1680
=>2x=220
=>x=110
d: =>\(2^{2x-1}=2^9\cdot2=2^{11}\)
=>2x-1=11
=>x=6
e: =>(x+2)^5=4^5
=>x+2=4
=>x=2
f: =>3x-4=0 hoặc x-1=0
=>x=4/3 hoặc x=1
g: =>(2x-1)^2=49
=>2x-1=7 hoặc 2x-1=-7
=>x=-3 hoặc x=4
h: =>x(x+1)/2=78
=>x(x+1)=156
=>x=12
\(4\left(x+1\right)\left(-x+2\right)+\left(2x-1\right)\left(2x+3\right)=-11\)
\(\text{⇔}-4x^2+4x+8+4x^2+4x-3=-11\)
\(\text{⇔}8x+5=-11\)
\(\text{⇔}8x=-16\)
\(\text{⇔}x=-2\)
Vậy: \(x=-2\)
==========
\(\left(2x+4\right)\left(3x+1\right)\left(x-2\right)-\left(-3x^2+1\right)\left(-2x+\dfrac{2}{3}\right)=-\dfrac{26}{3}\)
\(\text{⇔}6x^3+2x^2-24x-8-6x^3-2x^2-2x+\dfrac{2}{3}=-\dfrac{26}{3}\)
\(\text{⇔}-26x-\dfrac{22}{3}=-\dfrac{26}{3}\)
\(\text{⇔}-26x=-\dfrac{4}{3}\)
\(\text{⇔}x=\dfrac{2}{39}\)
\(a,3\left(x+1\right)-2=4\)
\(\Leftrightarrow3\left(x+1\right)=6\)
\(\Leftrightarrow x+1=2\)
\(\Leftrightarrow x=1\)
Vậy x=1
Các câu còn lại lm tương tự nhé
\(3\left(x+1\right)-2=4\)
<=> \(3x+3-2=4\)
<=> \(3x=3\)
<=> \(x=1\)
\(5\left(x-2\right)+20=45\)
<=> \(5x-10=25\)
<=> \(x=7\)
\(700-7\left(x+2\right)=140\)
<=> \(7x+14=560\)
<=> \(7x=546\)
<=> \(x=78\)
\(200-5\left(2x+4\right)=100\)
<=> \(10x+20=100\)
<=> \(x=8\)
\(5\left(2x-4\right)+150=250\)
<=> \(10x-20=100\)
<=> \(x=12\)
học tốt
\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)
\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)
Bài 4:
a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)
\(\Leftrightarrow6x-9-2x+4=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
hay \(x=\dfrac{13}{3}\)
c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
hay x=1
\(a,=x^2-4-x^2-2x-1=-2x-5\\ b,=8x^3-1-8x^3-1=-2\\ 3,\\ a,\Rightarrow x^3+8-x^3+2x=15\\ \Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\\ b,\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\\ \Rightarrow7x=14\Rightarrow x=2\)
Bài 2:
a) \(=x^2-4-x^2-2x-1=-2x-5\)
b) \(=8x^3-1-8x^3-1=-2\)
Bài 3:
a) \(\Rightarrow x^3+8-x^3+2x=15\)
\(\Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)
b) \(\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\)
\(\Rightarrow7x=14\Rightarrow x=2\)
a: ta có: \(\left(2x-5\right)\left(x+2\right)-2x\left(x-1\right)=15\)
\(\Leftrightarrow2x^2+4x-5x-10-2x^2+2x=15\)
\(\Leftrightarrow x=25\)
b: Ta có: \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow4x^2-25+\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5+2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-3\end{matrix}\right.\)
c: Ta có: \(x\left(4x-5\right)-\left(2x+1\right)^2=0\)
\(\Leftrightarrow4x^2-5x-4x^2-4x-1=0\)
\(\Leftrightarrow-9x=1\)
hay \(x=-\dfrac{1}{9}\)
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)
\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)
\(\Rightarrow x\left(6x-2-15-6x\right)\)
\(\Rightarrow-16x=0\)
\(\Rightarrow x=0\)
d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)
\(\Rightarrow9x^2-4-4x+4=0\)
\(\Rightarrow9x^2-4x=0\)
\(\Rightarrow x\left(9x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
\(a̸\)
\(\frac{3}{5}-\frac{1}{2}.x=\frac{1}{4}\)
\(\frac{1}{2}.x=\frac{3}{5}-\frac{1}{4}\)
\(\frac{1}{2}.x=\frac{7}{20}\)
\(\Rightarrow\frac{7}{10}\)
\(b̸\)
\(11,3+2\left[x-\frac{1}{3}\right]=\frac{25}{6}\)
\(2\left[x-\frac{1}{3}\right]=\frac{25}{6}-11,3\)
\(2\left[x-\frac{1}{3}\right]=\frac{-107}{15}\)
\(x-\frac{1}{3}=\frac{-107}{15}:2\)
\(x-\frac{1}{3}=\frac{-107}{30}\)
\(x=\frac{-107}{30}+\frac{1}{3}\)
\(x=\frac{-97}{30}\)
\(a)\frac{3}{5}-\frac{1}{2}x=\frac{1}{4}\)
\(\implies\frac{1}{2}x=\frac{3}{5}-\frac{1}{4}\)
\(\implies\frac{1}{2}x=\frac{7}{20}\)
\(\implies x=\frac{7}{20}:\frac{1}{2}\)
\(\implies x=\frac{7}{10}\)
Vậy...
\(b) 11,3+2(x-\frac{1}{3})=\frac{25}{6}\)
\(\implies \frac{113}{10}+2x-2.\frac{1}{3}=\frac{25}{6}\)
\(\implies \frac{113}{10}+2x-\frac{2}{3}=\frac{25}{6}\)
\(\implies \frac{113}{10}+2x=\frac{25}{6}+\frac{2}{3}\)
\(\implies \frac{113}{10}+2x=\frac{29}{6}\)
\(\implies 2x=\frac{29}{6}-\frac{113}{10}\)
\(\implies 2x=\frac{-97}{15}\)
\(\implies x=\frac{-97}{30}\)
Vậy..
\(c)5x-435+2x+140+3x=565\)
\(\implies (5x+2x+3x)+(-435+140)=565\)
\(\implies 10x+(-295)=565\)
\(\implies 10x=565-(-295)\)
\(\implies 10x=860\)
\(\implies x=86\)
Vậy...
~ hok tốt a~
giải giúp mình với
Lời giải:
$2^x+2^{x+1}+2^{x+2}+...+2^{x+140}=2^{2020}-4$
$2^x(1+2+2^2+...+2^{140})=2^{2020}-4$
Xét $A=1+2+2^2+...+2^{140}$
$2A=2+2^2+2^3+...+2^{141}$
$2A-A=2^{141}-1$
$A=2^{141}-1$
Vậy: $2^x(2^{141}-1)=2^{2020}-4$
$\Leftrightarrow 2^x(2^{141}-1)=4(2^{2018}-1)
$\Leftrightarrow 2^x=\frac{4(2^{2018}-1)}{2^{141}-1}$
Bạn xem lại đề. Số $x$ tìm được khá xấu.