Tìm \(x\in Z\):
\(x\cdot\left(x+3\right)>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I don't now
...............
.................
\(\left(x+1\right)\left(y-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0-1\\y=0+2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy x = - 1 ; y = 2
vì x + 2 = y + 1 = z + 3 => x = y - 1 = z + 1 ; y = x + 1 = z + 2; z = x + 1 = y - 2 và z < x < y
ta có (x-1/3).(y-1/2).(z-5)=0 => ta có 3 TH
TH1 z - 5 = 0 => z = 5 ; y = 7 ; x = 4
TH2 x - 1/3 = 0 => x = 1/3 ; y = 4/3 ; z = -2/3
TH3 y - 1/2 = 0 => y = 1/2 ; x = -1/2 ; z = -3/2
nhớ cho mik nha
Ta có:
\(\left(x-\frac{1}{2}\right).\left(y-\frac{1}{2}\right).\left(z-5\right)=0\)
\(\Rightarrow x-\frac{1}{2}=0;y-\frac{1}{2}=0\)hoặc \(z-5=0\)
Với \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)\(\Rightarrow\)\(x+2=\frac{1}{3}+2=\frac{7}{3}=y+1=z+3\)\(\Rightarrow y=...;z=...\)
Với \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\)\(\Rightarrow....\)
Với \(z-5=0\)\(\Rightarrow.....\)
B tự làm nốt nhé
a) (2 - x)(2x + 1) > 0
TH1: \(\hept{\begin{cases}2-x>0\\2x+1>0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x>-\frac{1}{2}\end{cases}\Rightarrow}-\frac{1}{2}< x< 2}\)
TH2: \(\hept{\begin{cases}2-x< 0\\2x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x< -\frac{1}{2}\end{cases}\left(vl\right)}}\)(vô lí)
Vậy: -1/2 < x < 2
b) (2x+3)(x + 1) < 0
TH1: \(\hept{\begin{cases}2x+3>0\\x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-\frac{3}{2}\\x< -1\end{cases}\Rightarrow-\frac{3}{2}< x< -1}}\)
TH2: \(\hept{\begin{cases}2x+3< 0\\x+1>0\end{cases}\Rightarrow\hept{\begin{cases}\left(x< -\frac{3}{2}\right)\\x>-1\end{cases}}\left(vl\right)}\)(vô lí)
Vậy -3/2 < x < -1
\(a,\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -1\\x>2\end{cases}}\)
=> -1 < x < 2
a, \(\left(x+1\right)\left(x-2\right)< 0\)
th1 :
\(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}\left(vl\right)}}\)
th2 :
\(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2\left(tm\right)}}\)
b, \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
th1 :
\(\hept{\begin{cases}\left(x-2\right)>0\\\left(x+\frac{2}{3}\right)>0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}\Rightarrow}x>2}\)
th2 :
\(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}\Rightarrow x< -\frac{2}{3}}}\)