K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2017

Để CM \(\frac{n+5}{n+4}\) là phân số tối giản thì ta cần chứng minh n + 5 và n + 4 là nguyên tố cùng nhau

Gọi d là ước chung lớn nhất của n + 5 và n + 4

=> n + 5 và n + 4 chia hết cho d

=> (n + 5) - (n + 4) chia hết cho d

=> 1 chia hết cho d => d = 1

Vì ước chung lớn nhất của n + 5 và n + 4 là 1 => n + 5 và n + 4 là nguyên tố cùng nhau

=> \(\frac{n+5}{n+4}\) là phân số tối giản (đpcm)

14 tháng 2 2017

Thank you very much!

25 tháng 2 2019

Gọi ƯCLN(n-5;3n-14) là d, Ta có :

 n-5 =3n-15 chia hết cho d ; 3n-14 chia hết cho d      

=>(n-5)-(3n-14)=1 chia hết cho d

=>d=1 hoặc -1 =>n-5 và 3n-14 là psố tối giản

25 tháng 2 2019

k cho min nha !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

18 tháng 2 2022

a, \(A=\dfrac{n+5}{n+4}=\dfrac{n+4+1}{n+4}=1+\dfrac{1}{n+4}\Rightarrow n+4\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 41-1
n-3-5

b, đk n khác 4

Gọi ƯCLN (n+5;n+4) = d ( d\(\in Z\)

n + 5 - n - 4 = 1 => d = 1 

Vậy A là phân số tối giản với mọi giá trị nguyên, n khác 4 

 

 

13 tháng 1 2019

Gọi ƯC(n+2;2n+5) là d

Ta có :

n + 2 ⋮ d => 2( n + 2 ) ⋮ d => 2n + 4 ⋮ d (1)

2n + 5 ⋮ d (2)

Từ (1) và (2) ta có : 

2n + 5 - 2n - 4 ⋮ d

<=> 1 ⋮ d

=> d thuộc Ư(1) = 1

=> d = 1

Vậy n + 2 và 2n + 5 có ước chung lớn nhất bằng 1 => n + 2 / 2n + 5 tối giản ( đpcm )

13 tháng 1 2019

                                 Giải

Ta phải chứng minh : \(\left(n+2,2n+5\right)=1\)

Đặt ( n + 2 , 2n + 5 ) = d

\(\Rightarrow\hept{\begin{cases}\left(n+2\right)⋮d\\\left(2n+5\right)⋮d\end{cases}}\)

\(\Rightarrow\left[2\left(n+2\right)\right]⋮d\)

\(\Rightarrow\left(2n+4\right)⋮d\)

\(\Rightarrow\left(2n+5\right)-\left(2n+4\right)⋮d\)

\(\Rightarrow2n+5-2n-4⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

Vậy \(\frac{n+2}{2n+5}\)tối giản với mọi n \(\inℤ\) \(\left(đpcm\right)\)

8 tháng 4 2020

*) Gọi d là ƯCLN (3+n; 2n+5) (d thuộc N*)=> \(\hept{\begin{cases}3+n⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3+n\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6+2n⋮d\\2n+5⋮d\end{cases}}}\)

=> (2n+6)-(2n+5) chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d=1

=> ƯCLN (3+n; 2n+5)=1

=> đpcm

*) Gọi d là ƯCLN (4-3n; 2n-3) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}4-3n⋮d\\2n-3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2\left(4-3n\right)⋮d\\3\left(2n-3\right)⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}8-6n⋮d\\6n-9⋮d\end{cases}}}\)

=> (8-6n)+(6n-9) chia hết cho d

=> -1 chia hết cho d

Mà d thuộc N* => d=1

=> ƯCLN (4-3n;2n-3) =1 => đpcm

Có : \(\frac{n+5}{n+6}=\frac{n+6-1}{n+6}=\frac{n+6}{n+6}-\frac{1}{n+6}=1-\frac{1}{n+6}\)

Để \(\frac{n+5}{n+6}\in Z\Rightarrow n+6\inƯ\left(1\right)\)

\(Ư\left(1\right)\in\left\{\pm1\right\}\Rightarrow n+6\in\left\{1;-1\right\}\)

\(\Rightarrow n\in\left\{-5;-7\right\}\)

21 tháng 2 2016
a) 15n + 1/ 30n + 1 goi ucln cua 15n + 1/ 30n +1 la d ={15n + 1 hcia het cho d 30n + 1 chia het cho d 15n + 1 chia het cho d suy ra 4 (15n+ 1) chia het cho d (1) 30n +1 chia het cho d suy ra 2 ( 30n +1 ) (2) tu (1) va (2) theo t/c chia het mot hieu ta co 4(15n + 1)- 2(30n+1)chia het cho d 60n -4 - 60n - 2chia het cho d suy ra 1 chia het cho d suy ra d=1 vay d=1 nen UCLN( 15n +1, 30n +1) =1 vay phan so do la phan so toi gian