K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2017

a+1+a+2+a+3+a+4+a+5=65

(a+a+a+a+a )+ ( 1+2+3+4+5 ) = 65

a x 5   +15   = 65

a x 5 = 65 -15

 a x 5 = 50 

     a = 50 :5 

     a = 10 ai k mk mk tk lai

14 tháng 2 2017

thiếu đề 

Bài 3:

a: a*S=a^2+a^3+...+a^2023

=>(a-1)*S=a^2023-a

=>\(S=\dfrac{a^{2023}-a}{a-1}\)

b: a*B=a^2-a^3+...-a^2023

=>(a+1)B=a-a^2023

=>\(B=\dfrac{a-a^{2023}}{a+1}\)

14 tháng 12 2017

Xét tính chẵn, lẻ của 5 số ta có các trường hợp sau:

TH1: Cả 5 số đều chẵn (hoặc đều lẻ), khi đó tích \(\left(a_1-a_2\right)\left(a_1-a_3\right)\left(a_1-a_4\right)\left(a_1-a_5\right)\left(a_2-a_3\right)\left(a_2-a_4\right)\left(a_2-a_5\right)\) chia hết cho \(2^8\) => A chia hết cho 32

TH2: Có 4 số đều chẵn (hoặc đều lẻ), giả sử \(a_1,a_2,a_3,a_4\). Khi đó \(\left(a_1-a_2\right)\left(a_1-a_3\right)\left(a_1-a_4\right)\left(a_2-a_3\right)\left(a_2-a_4\right)\left(a_3-a_4\right)\) chia hết cho \(2^6\) => A chia hết cho 32

TH3: Có 3 số chẵn (hoặc lẻ), giả sử \(a_1=2b_1;a_2=2.b_2,a_3=2b_3\), còn 2 số kia lẻ (hoặc chẵn) , giả sử là \(a_4=2b_4+1,a_5=2b_5+1\).. 

Khi đó \(\left(a_1-a_2\right)\left(a_1-a_3\right)\left(a_1-a_3\right)\left(a_4-a_5\right)=2^4\left(b_1-b_2\right)\left(b_1-b_3\right)\left(b_2-b_3\right)\left(b_4-b_5\right)\) chia hết cho \(2^4=16\) 

Trong các số \(b_1,b_2,b_3\) sẽ lại có ít nhất hai số cùng chẵn (hoặc cùng lẻ), hiệu của hai số này chia hết cho 2. Vậy nên tích trên sẽ chia hết cho 32.

=> Tích A chia hết cho 32.

Ngoài 3 TH trên thì không còn trường hợp nào khác => A luôn chia hết cho 32.

Tương tự, khi chia 5 số cho 3 thì có ít nhất hai số có cùng số dư, giả sử \(a_1,a_2\). Khi đó \(a_1-a_2\) chia hết cho 3.

Xét 4 số \(a_2,a_3,a_4,a_5\) khi chia cho 3 cũng có 2 số có cùng số dư, giả sử \(a_2,a_3\). Khi đó \(a_2-a_3\) chia hết cho 3

=> A chia hết cho 3.3 = 9

A vừa chia hết cho 32, lại vừa chia hết cho 9 => A chia hết cho 32.9 = 288.

2 tháng 11 2017

ahihi

14 tháng 12 2017

Bạn xem hướng dẫn ở link phía dưới nhé:

Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath

3 tháng 12 2015

Bạn vào đây tìm đi Giáo án Toán 7 - Tuần 1 đến tuần 7 - Giáo Án, Bài Giảng

19 tháng 10 2019

Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath

26 tháng 8 2017

Theo đề ta có :

* \(a_2^2=a_1.a_3\) \(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}\) (1)

* \(a_3^2=a_2.a_4\Rightarrow\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\left(2\right)\)

* \(a_4^2=a_3.a_5\Rightarrow\dfrac{a_3}{a_4}=\dfrac{a_4}{a_5}\left(3\right)\)

* \(a^2_5=a_4.a_6\Rightarrow\dfrac{a_4}{a_5}=\dfrac{a_5}{a_6}\left(4\right)\)

Từ (1) ; (2) ; (3) và (4) nên ta có :

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=\dfrac{a_4}{a_5}=\dfrac{a_5}{a_6}\)

\(=\dfrac{a_1+a_2+a_3+a_4+a_5}{a_2+a_3+a_4+a_5+a_6}\) (5)

\(=\dfrac{a_1.a_2.a_3.a_4.a_5}{a_2.a_3.a_4.a_5.a_6}=\dfrac{a_1}{a_6}\) (6)

Từ (5) và (6) , ta có :

\(\dfrac{a_1+a_2+a_3+a_4+a_5}{a_2+a_3+a_4+a_5+a_6}=\dfrac{a_1}{a_6}\)

Áp dụng 2 phân số bằng nhau , ta có :

\(\left(a_1+a_2+a_3+a_4+a_5\right)a_6=\left(a_2+a_3+a_4+a_5+a_6\right)a_1\)

\(\left(đpcm\right)\)

31 tháng 8 2017

cảm ơn bạn nhiều

Bài 2: 

\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=9\)

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)}{\left(ab\right)^3}\)

\(=\dfrac{5^3-3\cdot5\cdot\left(-2\right)}{\left(-2\right)^3}=\dfrac{125+30}{8}=\dfrac{155}{8}\)

\(a-b=-\sqrt{\left(a+b\right)^2-4ab}=-\sqrt{5^2-4\cdot\left(-2\right)}=-\sqrt{33}\)