K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}=90^0-40^0=50^0\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}\)

=>\(BC=\dfrac{6}{sin50}\simeq7,83\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=BC^2-AB^2\)

=>\(AC\simeq5,03\left(cm\right)\)

b: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}+58^0=90^0\)

=>\(\widehat{B}=32^0\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}\)

=>\(BC=\dfrac{10}{sin58}\simeq11,79\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=BC^2-AB^2\)

=>\(AC=\sqrt{BC^2-AB^2}\simeq6,25\left(cm\right)\)

c: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}=90^0-58^0=32^0\)

Xét ΔABC vuông tại A có

\(sinB=\dfrac{AC}{BC}\)

=>\(AC=BC\cdot sinB=20\cdot sin58\simeq16,96\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB=\sqrt{BC^2-AC^2}\simeq10,6\left(cm\right)\)

d: Bạn ghi lại đề đi bạn

19 tháng 1 2021

a. Vì 2 điểm B và C thuộc tia Ax(gt)

Suy ra:  AC= AB + BC

Thay số: AC = 7+2=9

Vậy AC =9 cm

b. Làm tương tự chỉ cần thay AB=a  BC=b thôi

20 tháng 1 2021

cảm ơn bạn haha

21 tháng 7 2021

b)  (2x-6)(x+4)=0

c)  (x-3)(x+4)<0

d)  (x+2)(X-5)>0

21 tháng 7 2021

bạn đăg tách ra cho m.n cùng giúp nhé

Bài 2 : 

a, \(A=\left|2x-4\right|+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=\left|x+2\right|-3\ge-3\)

Dấu ''='' xảy ra khi x = -2 

Vậy GTNN B là -3 khi x = -2 

NV
14 tháng 11 2021

a. \(\overrightarrow{AB}=\left(2;0\right)\) ; \(\overrightarrow{BC}=\left(-3;3\right)\) ; \(\overrightarrow{CA}=\left(1;-3\right)\)

b. Do \(\dfrac{2}{-3}\ne\dfrac{0}{3}\Rightarrow\) hai vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) không cùng phương

\(\Rightarrow\) 3 điểm A;B;C không thẳng hàng

c.

\(\left\{{}\begin{matrix}x_M=\dfrac{x_B+x_C}{2}=\dfrac{5}{2}\\y_M=\dfrac{y_B+y_C}{2}=\dfrac{3}{2}\end{matrix}\right.\)  \(\Rightarrow M\left(\dfrac{5}{2};\dfrac{3}{2}\right)\)

\(\left\{{}\begin{matrix}x_N=\dfrac{x_C+x_A}{2}=\dfrac{3}{2}\\y_N=\dfrac{y_C+y_A}{2}=\dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow N\left(\dfrac{3}{2};\dfrac{3}{2}\right)\)

\(\left\{{}\begin{matrix}x_P=\dfrac{x_A+x_B}{2}=3\\y_P=\dfrac{y_A+y_B}{2}=0\end{matrix}\right.\) \(\Rightarrow P\left(3;0\right)\)

25 tháng 7 2021

Bài 2 : 

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca 

<=> a^2 + b^2 + c^2 = ab + bc + ca 

<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca 

<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0 

<=> a = b = c 

NV
25 tháng 7 2021

1.

\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)

2.

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Lời giải:

Đặt $a+b+c=p; ab+bc+ac=q=1; abc=r$

$p,r\geq 0$

Áp dụng BĐT AM-GM: $p^2\geq 3q=3\Rightarrow p\geq \sqrt{3}$

$a,b,c\leq 1\Leftrightarrow (a-1)(b-1)(c-1)\leq 0$

$\Leftrightarrow p+r\leq 2\Rightarrow p\leq 2$

$P=\frac{(a+b+c)^2-2(ab+bc+ac)+3}{a+b+c-abc}=\frac{(a+b+c)^2+1}{a+b+c-abc}=\frac{p^2+1}{p-r}$

Ta sẽ cm $P\geq \frac{5}{2}$ hay $P_{\min}=\frac{5}{2}$

$\Leftrightarrow \frac{p^2+1}{p-r}\geq \frac{5}{2}$

$\Leftrightarrow 2p^2-5p+2+5r\geq 0(*)$

---------------------------

Thật vậy:

Áp dụng BĐT Schur thì:

$p^3+9r\geq 4p\Rightarrow 5r\geq \frac{20}{9}p-\frac{5}{9}p^3$

Khi đó:

$2p^2-5p+2+5r\geq 2p^2-5p+2+\frac{20}{9}p-\frac{5}{9}p^3=\frac{1}{9}(2-p)(5p^2-8p+9)\geq 0$ do $p\leq 2$ và $p\geq \sqrt{3}$

$\Rightarrow (*)$ được CM

$\Rightarrow P_{\min}=\frac{5}{2}$

Dấu "=" xảy ra khi $(a,b,c)=(1,1,0)$ và hoán vị