( | 1 - x | - 1/3).(x²+1)= 0
Có ai giải đc ko giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do x+y+z=1 nên 1/x+1/y+1/z sẽ bằng \(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}=1+\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+1+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}+1\)
\(=3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\)
Ta có
\(\frac{x}{y}+\frac{y}{z}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\)
Cộng vế theo vế của 3 bất đẳng thức trên ta được
\(\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\ge6\)
Cộng 3 vào 2 vế bất đẳng thức
\(\Rightarrow3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\ge9\)
Mà \(3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge9\)
Xong !!!!
T I C K nha cảm ơn nhìu
CHÚC BẠN HỌC TỐT
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}=9\left(đpcm\right)\)
Dấu "=" xảy ra <=> x=y=z=1/3
a) x(4x + 2) = 4x2 - 14
⇔ 4x2 + 2x = 4x2 - 14
⇔ 4x2 - 4x2 + 2x = -14
⇔ 2x = -14
⇔ x = -7
Vậy tập nghiệm S = ......
b) (x2 - 9)(2x - 1) = 0
⇔ x2 - 9 = 0 hoặc 2x - 1 = 0
⇔ x2 = 9 hoặc 2x = 1
⇔ x = 3 hoặc -3 hoặc x = \(\dfrac{1}{2}\)
Vậy .......
c) \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{x^2-4}\)
⇔ \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{\left(x-2\right)\left(x+2\right)}\)
ĐKXĐ: x - 2 ≠ 0 và x + 2 ≠ 0
⇔ x ≠ 2 và x ≠ -2MSC (mẫu số chung): (x - 2)(x + 2)Quy đồng mẫu hai vế và khử mẫu ta được:3x + 6 + 4x - 8 = x - 12⇔ 3x + 4x - x = 8 - 6 - 12⇔ 6x = -10⇔ x = \(-\dfrac{5}{3}\) (nhận)Vậy ........\(\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
\(=\left(x^2-1\right)\left(x+3\right)\)
\(=x^3+3x^2-x-3\)
(x + y) 2006 + 2007 (y - 1) = 0
=> (x + y) 2006 = 0 và 2007 (y - 1) = 0
=> x + y = 0 và y - 1 = 0
=> x + y = 0 và y = 0 + 1 = 1
=> x + 1 = 0 và y = 1
=> x = 0 - 1 = -1 và y = 1
(x - y - 5) + 2007 (y - 3) 2008 = 0
=> (x - y - 5) = 0 và 2007 (y - 3) 2008 = 0
=> x - y = 0 + 5 = 5 và (y - 3)2008 = 0
=> x - y = 5 và y - 3 = 0 => y = 0 + 3 = 3
=> x - 3 = 5 và y = 3
=> x = 5 + 3 = 8 và y = 3
(x - 1) 2 + (y + 3) 2 = 0
=> (x - 1) 2 = 0 và (y + 3) 2 = 0
=> x - 1 = 0 và y + 3 = 0
=> x = 0 + 1 = 1 và y = 0 - 3 = -3
tìm x y thõa mãn đẳng thức
(x+y) ^ 2006 +2007[y-1] = 0
[x-y-5] + 2007(y-3)^ 2008 = 0
(x-1) ^ 2 + (y+3) ^ 2 = 0
Đề như thế này phải ko nhân Shift rồi ấn số 6 là mũ
Giải bằng phương pháp hàm số tức là sử dụng đạo hàm để khảo sát đặc điểm của hàm số (tính đơn điệu, cực trị, ... ) bạn nhé.
Đặt f(x)=\(x^5+x^3-\sqrt{1-3x}+4\) với tập xác định \(D=(-\infty;\frac{1}{3}]\)
Xét đạo hàm f'(x) = \(5x^4+3x^2+\frac{3}{2\sqrt{1-3x}}>0\)\(\forall x\in D\)
Từ đó suy ra hàm số y=f(x) đồng biến trên tập xác định D của nó. Suy ra hàm số NẾU có nghiệm thì chỉ có duy nhất một nghiệm.
Mà ta lại nhẩm được f(-1)=0. Vậy phương trình có nghiệm duy nhất \(x=-1\)
Nhận thất 2 vế của BĐT đều dương nên bình phương lên
\(\Leftrightarrow3x^2-9x+1>x^2+4x+4\)
\(\Leftrightarrow2x^2-13x-3>0\)
................
Đề có nhầm ko mà nghiệm xấu vậy ạ ?
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))
\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3
\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)
\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)
\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)
\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)
\(\Leftrightarrow\) \(2x^2+7x+3=0\)
\(\Delta=7^2-4.2.3=25\); \(\sqrt{\Delta}=5\)
Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:
\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)
Vậy ...
Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)
\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)
Vậy ...
Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\); \(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!
VD1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)
\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)
\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)
Vậy ...
Phần b tương tự nha
c, \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow\) \(x^2=2\)
\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)
Vậy ...
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)
\(\Leftrightarrow\) \(x-1=5\)
\(\Leftrightarrow\) \(x=6\)
Vậy ...
VD2:
Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))
\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(x^2=3\)
\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)
Vậy ...
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x^2-4x=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)
\((|1-x|-\dfrac{1}{3}).(x^2+1)=0\)
Mà \(x^2+1 \ge 0\) với mọi `x`
\(=>|1-x|-\dfrac{1}{3}=0\)
\(=>|1-x|=\dfrac{1}{3}\)
\(@TH1: 1-x=\dfrac{1}{3}=>x=\dfrac{2}{3}\)
\(@TH2: 1-x=\dfrac{-1}{3}=>x=\dfrac{4}{3}\)