K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2017

abc dgfdwsgfwgdwef

13 tháng 2 2017

áp dụng định lí py - ta - go vào tam giác vuông ACD và tam giác vuông ABC có:

\(CD^2=AD^2+AC^2\) 

\(BC^2=AB^2+AC^2\) 

\(\Rightarrow CD^2-BC^2=\left(AD^2+AC^2\right)-\left(AB^2+AC^2\right)=AD^2+AC^2-AB^2-AC^2=AD^2-AB^2\left(1\right)\) 

áp dụng định lí Py - ta - go vào tam giác vuông AED và ABE có:

\(ED^2=AD^2+AE^2\) 

\(BE^2=AB^2+AE^2\) 

\(\Rightarrow ED^2-BE^2=\left(AD^2+AE^2\right)-\left(AB^2+AE^2\right)=AD^2+AE^2-AB^2-AE^2=AD^2-AB^2\left(2\right)\) 

Từ 1 và 2 => CD2 - BC2 = ED2 - BE2 (đpcm)

14 tháng 7 2015

a. tam giác ABC cân tại A --> góc ABC= góc ACB

mà góc ABC = góc EBF (đối đỉnh)

---> góc ACB = góc EBF 

Xét tam giác EBF và tam giác DCK

     góc FEB= góc KDC= 90o

    EB=DC (gt)

    góc EBF =góc DCK

---->tam giác EBF = tam giác DCK(g.c.g)

b. có EF//DK ( do cùng vuông góc BC)

----> góc EFK = góc DKF ( so le trong)

Xét tam giác IEF và tam giác IDK

    góc IEF= góc IDK=90o

    EF=DK ( câu a)

    góc EFI = góc DKI

---> tam giác IEF = tam giác IDK( g.c.g)

----> IF=IK

10 tháng 3 2017

a, △ABE=△ACD (g.c.g) vì AB=AC;A^ chung; ABE^=ACD^=4502
⇒BE=CD;AE=AD;AEB^=ADC^

b, △BDI=△CEI (g.c.g) vì BD=EC(=AB−AD);BDI^=IEC^(=1800−BEA^);ABE^=ACD^=4502
⇒ID=IE

△ADI=△AEI (c.g.c) vì AD=AE;ADC^=AEB^;ID=IE
⇒DAI^=EAI^=9002=450

△AMC có CAM^=MCA^=450⇒△AMC vuông cân tại M.

Chứng minh tương tự có △AMB vuông cân tại M.

c, Gọi F là giao điểm của BE và AK.

△BAF=△BKF (g.c.g) vì BFA^=BFK^=900;BF chung ABF^=KBF^=4502
⇒AB=BK

Chứng minh tương tự có ⇒BD=BH ⇒HK=AD(1)

△ABE=△KBE (c.g.c) vì AB=BK;ABE^=KBE^=4502;BE chung.
⇒AE=EK;BKE^=BAE^=900

⇒EK⊥BC hay △EKC vuông cân tại K⇒KC=KE=AE=AD(2)

Từ (1) và (2) ⇒HK=CK

Câu 1 

Xét tam giác OAC ta có

AC = OA = OC ( gt )

=> tam giác OAC là tam giác đều

=>\(\widehat{CAB}=60^0\)

\(\widehat{ACB}=90^0\)(góc nội tiếp chắn nửa đường tròn )

=> \(\widehat{ABC}=180^0-90^0-60^0=30^0\)

Vậy ..............

P/s hình hơi xấu thông cảm

Câu 2 )

Xét tam giác vuông KCB , ta có :

EC = EK ( gt )

MB = MC ( gt)

=>EM là đường trung bình của tam giác KCB

=> \(\widehat{BKC}=\widehat{MEC}=90^0\)

Chứng minh tương tự : Xét tam giác ECB 

=> \(\widehat{CIB}=\widehat{MPB}=90^0\)

Xét tứ giác BIKC , ta có:

\(\widehat{BKC}\)và \(\widehat{BIC}\)cùng nhìn BC dưới 1 góc 90 độ )

=> Tứ giác BIKC nội tiếp đường tròn 

=> 4 điểm B,I,K,C cùng nằm trên 1 đường tròn 

P/ s hình tự vẽ , tham khảo bài làm nha bạn

DD
9 tháng 6 2021

a) Tam giác \(ABC\)vuông tại \(A\)trung tuyến \(AN\)nên \(AN=\frac{1}{2}BC=NB\)suy ra \(\Delta NAB\)cân tại \(N\)

\(\Rightarrow\widehat{NAB}=\widehat{NBA}\).

Tương tự ta cũng suy ra \(\widehat{MAD}=\widehat{MDA}\)

mà \(DE//BC\Rightarrow\widehat{MDA}=\widehat{NBA}\)

suy ra \(\widehat{NAB}=\widehat{MAD}\)\(\Rightarrow A,M,N\)thẳng hàng. 

b) \(AN=\frac{BC}{2},AM=\frac{DE}{2}\Rightarrow AN-AM=\frac{BC-DE}{2}\Leftrightarrow MN=\frac{BC-DE}{2}\).

7 tháng 7 2017

A B C D E S T

27 tháng 2 2019

ai làm nhanh nhất tui tk

13 tháng 7 2020

a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)

=> DM=NE

b) Ta có

\(\Delta MDI\perp D\)=> DMI+MID=90 độ

\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ

mà MID=NEI đối đỉnh

=> DMI=ENI

\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)

=> IM=ỊN

=> BC cắt MN tại I là trung Điểm của MN

c) Gọi H là chân đường zuông góc kẻ từ A xuống BC

=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )

=> góc HAB= góc HAC

Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I

=> tam giác OAB= tam giác OAC (c-g-c)(1)

=> góc OBA = góc OCA ; OC=OB

tam giác OBM= tam giác OCN (c-g-c)

=> góc OBM=góc OCN (2)

từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC

=> O luôn cố đinhkj

=> DPCM