K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Lời giải:

\(\frac{x-b-c}{a}+\frac{x-a-c}{b}+\frac{x-a-b}{c}=3\)

\(\Leftrightarrow \frac{x-b-c}{a}-1+\frac{x-a-c}{b}-1+\frac{x-a-b}{c}-1=0\)

\(\Leftrightarrow \frac{x-b-c-a}{a}+\frac{x-a-c-b}{b}+\frac{x-a-b-c}{c}=0\)

\(\Leftrightarrow (x-a-b-c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0(1)\)

Vì $abc(ab+bc+ac)\neq 0\Rightarrow \frac{ab+bc+ac}{abc}\neq 0$

$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\neq 0(2)$

Từ $(1);(2)\Rightarrow x-a-b-c=0\Rightarrow x=a+b+c$

15 tháng 1 2017

có thiếu gì ko bn

15 tháng 1 2017

đầu bài k đầy đủ thì giải sao được

15 tháng 1 2017

Ta có \(\frac{x-b-c}{a}+\frac{x-c-a}{b}+\frac{x-b-a}{c}=3\)

\(\Rightarrow\frac{x-b-c}{a}+\frac{x-c-a}{b}+\frac{x-b-a}{c}-3=0\)

\(\Leftrightarrow\left(\frac{x-b-c}{a}-1\right)+\left(\frac{x-c-a}{b}-1\right)+\left(\frac{x-b-a}{c}-1\right)=0\)

\(\Leftrightarrow\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}+\frac{x-a-b-c}{c}=0\)

\(\Leftrightarrow\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ne0\) nên chỉ có

x-a-b-c=0 =>x=a+b+c

Vậy x=a+b+c

a) \(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)

\(\Leftrightarrow\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}+1+\frac{4x}{a+b+c}-4=0\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}+\frac{4x-4\left(a+b+c\right)}{a+b+c}=0\)

\(\Leftrightarrow\left(x-a-b-x\right)\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=0\)

b)đề bài như trên

\(\Leftrightarrow\left(\frac{x-a-b-c}{bc}\right)+\left(\frac{x-b}{ca}-\frac{1}{a}-\frac{1}{c}\right)+\left(\frac{x-c}{ab}-\frac{1}{a}-\frac{1}{b}\right)=0\)

\(\Leftrightarrow\left(x-a-b-c\right)\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=0\)

15 tháng 1 2020

\(ĐKXĐ:a,b,c\ne0\)

\(\frac{x-a}{bc}+\frac{x-b}{ca}+\frac{x-c}{ab}=\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)

\(\Leftrightarrow\frac{xa-a^2}{abc}+\frac{xb-b^2}{abc}+\frac{xc-c^2}{abc}=\frac{2bc}{abc}+\frac{2ac}{abc}+\frac{2ab}{abc}\)

\(\Leftrightarrow\frac{xa-a^2+xb-b^2+xc-c^2}{abc}=\frac{2bc+2ac+2ab}{abc}\)

\(\Leftrightarrow xa-a^2+xb-b^2+xc-c^2=2bc+2ac+2ab\)

\(\Leftrightarrow xa+xb+xc=2bc+2ac+2ab+a^2+b^2+c^2\)

\(\Leftrightarrow x\left(a+b+c\right)=\left(a+b+c\right)^2\)

\(\Leftrightarrow x=a+b+c\)

Vậy x = a + b + c

15 tháng 1 2020

\(ĐKXĐ:a,b,c\ne0\)

\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)

\(\Leftrightarrow\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}=1-\frac{4x}{a+b+c}\)

\(\Leftrightarrow1+\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}=4\)

\(-\frac{4x}{a+b+c}\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}=\)

\(\frac{4\left(a+b+c\right)}{a+b+c}-\frac{4x}{a+b+c}\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}=\)

\(\frac{4\left(a+b+c-x\right)}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)

\(\Rightarrow\left(a+b+c-x\right)=0\)hoặc \(\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)

+) Nếu \(\Rightarrow\left(a+b+c-x\right)=0\)thì x = a + b + c

+) Nếu \(\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)thì x thỏa mãn với mọi số

28 tháng 4 2015

Điều kiện a; b ; c khác 0

\(\Rightarrow x.\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=2.\left(\frac{bc+ac+ab}{abc}\right)+\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\)

\(\Rightarrow x.\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=\frac{2bc+2ac+2ab}{abc}+\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}\)

\(\Rightarrow x.\left(\frac{a+b+c}{abc}\right)=\frac{\left(a+b+c\right)^2}{abc}\)

\(\Rightarrow x.\left(a+b+c\right)=\left(a+b+c\right)^2\)

Nếu a+ b+ c khác 0 => phương trình có nghiệm duy nhất là \(\Rightarrow x=a+b+c\)

Nếu a+ b + c = 0 => x. 0 = 0 =>  pt có vô số nghiêm

11 tháng 12 2018

x=a+b+c