Chứng tỏ \(^{2^n-1}\)và \(2^n+1\)không đồng thời là số nguyên tố với mọi n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình thử n = 2 thì 2n - 1 = 2 . 2 - 1 = 3 (3 là số nguyên tố)
n = 2 thì 2n + 1 = 2 . 2 + 1 = 5 (5 là số nguyên tố)
Vậy đề bạn sai
8n−1;8n;8n+18n−1;8n;8n+1 là 3 số tự nhiên liên tiếp nên chia hết cho 3.mà 8^n không chia hết cho 3 nên 1 trong 2 số còn lại chia hết cho 3.
Trường hợp 2 số đó là 2 và 3 không tìm được số tự nhiên n thoả mãn.vậy chúng không thể nguyên tố cùng nhau.
Lời giải:
Gọi $\text{B(2021)}$ là bội của $2021$
$2022^n-1=(2021+1)^n-1=\text{B(2021)}+1-1=\text{B(2021)}$
Mà $2021=43\times 47$ không phải số nguyên tố
$\Rightarrow 2022^n-1$ không là số nguyên tố
$\Rightarrow 2022^n-1, 2022^n+1$ không thể đồng thời là số nguyên tố.
VD: 25=4.6+1=52
15=4.4-1=3.5
Bạn chỉ cần lấy ví dụ đơn giản cho bài như thế là được