Bài 11 (trang 104 SGK Toán 9 Tập 1)
Cho đường tròn (O) đường kính $AB$, dây $CD$ không cắt đường kính $AB$. Gọi $H$ và $K$ theo thứ tự là chân các đường vuông góc kẻ từ $A$ và $B$ đến $CD$. Chứng minh rằng $CH= DK$.
Gợi ý. Kẻ $OM$ vuông góc với $CD$.
Lời giải chi tiết
Vẽ OM⊥CDOM⊥CD
Vì OM là một phần đường kính và CD là dây của đường tròn nên ta có M là trung điểm CD hay MC=MDMC=MD (1) (định lý)
Tứ giác AHKBAHKB có AH⊥HK; BK⊥HK⇒HA//BKAH⊥HK; BK⊥HK⇒HA//BK.
Suy ra tứ giác AHKBAHKB là hình thang.
Xét hình thang AHKBAHKB, ta có:
OM//AH//BKOM//AH//BK (cùng vuông góc với CDCD)
mà AO=BO=AB2AO=BO=AB2
⇒MO⇒MO là đường trung bình của hình thang AHKBAHKB.
⇒MH=MK⇒MH=MK (2)
Từ (1) và (2) ⇒MH−MC=MK−MD⇔CH=DK⇒MH−MC=MK−MD⇔CH=DK (đpcm)
Nhận xét: Kết quả của bài toán trên không thay đổi nếu ta đổi chỗ hai điểm CC và DD cho nhau.
Kẻ OMOM vuông góc với dây CDCD.
Hình thang AHKBAHKB có
AO=OBAO=OB và OM / / AH / / BKOM//AH//BK
nên MH=MKMH=MK (1)
OMOM vuông góc với dây CDCD nên
MC=MDMC=MD (2)
Từ (1) và (2) suy ra CH=DKCH=DK.