K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

67889

a: Xét tứ giác MAOD có 

\(\widehat{MAO}+\widehat{ODM}=180^0\)

Do đó: MAOD là tứ giác nội tiếp

Xét (O) có

OC là bán kính

FC\(\perp\)CO tại C

Do đó: FC là tiếp tuyến của (O)

Xét (O) có

FC,FA là các tiếp tuyến

Do đó: FC=FA và OF là phân giác của góc AOC

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB và OM là phân giác của góc AOB

Ta có: OF là phân giác của góc AOC

=>\(\widehat{AOC}=2\cdot\widehat{AOF}\)

Ta có: OM là phân giác của góc AOB

=>\(\widehat{AOB}=2\cdot\widehat{AOM}\)

Ta có: \(\widehat{AOB}+\widehat{AOC}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{AOF}+\widehat{AOM}\right)=180^0\)

=>\(2\cdot\widehat{FOM}=180^0\)

=>\(\widehat{FOM}=90^0\)

Xét ΔFOM vuông tại O có OA là đường cao

nên \(AF\cdot AM=OA^2\)

mà AF=CF và BM=MA

nên \(CF\cdot MB=OA^2=R^2\)

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó:ΔACB vuông tại C

=>\(\widehat{ACB}=90^0\)

Ta có: ΔOAC cân tại O(OA=OC)

mà OH là đường trung tuyến

nên OH\(\perp\)AC và OH là tia phân giác của góc AOC

Ta có: OH\(\perp\)AC(cmt)

AC\(\perp\)CB tại C(Do ΔACB vuông tại C)

Do đó: OH//BC

b:

OH là phân giác của góc AOC

=>\(\widehat{AOH}=\widehat{COH}\)

mà M\(\in\)OH

nên \(\widehat{AOM}=\widehat{COM}\)

Xét ΔOCM và ΔOAM có

OC=OA

\(\widehat{COM}=\widehat{AOM}\)

OM chung

Do đó: ΔOCM=ΔOAM

=>\(\widehat{OCM}=\widehat{OAM}\)

mà \(\widehat{OCM}=90^0\)

nên \(\widehat{OAM}=90^0\)

=>OA\(\perp\)MA tại A

=>MA là tiếp tuyến tại A của (O)