phân tích đa thức thành nhân tử :
a) a^2-5ab+6b^2
b)4a^2-17ab+13a^2
c)4x^4-81
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-y^2+4x+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
\(4x^2-y^2+8\left(y-2\right)\)
\(=4x^2-\left(y^2-8y+16\right)\)
\(=4x^2-\left(y-4\right)^2\)
\(=\left(2x+y-4\right)\left(2x-y+4\right)\)
a/ 9a^3 - 13a + 6 = 9a^3 - 6a^2 + 6a^2 - 4a - 9a + 6 = (9a^3 - 6a^2) + (6a^2 - 4a) - (9a - 6) = 3a^2(3a - 2) + 2a(3a - 2) - 3(3a - 2) = (3a^2 + 2a - 3)(3a - 2) Mình gửi luôn cho nóng^^Được câu nào hay câu đó. Yên tâm mình sẽ cố nghĩ &gửi nốt :)))
b/x^4 - 4x^3 + 8x + 3 = x^4 - 3x^3 - x^3 + 3x^2 - 3x^2 + 9x - x + 3 = (x^4 - 3x^3) - (x^3 - 3x^2) - (3x^2 - 9x) - (x - 3) = x^3(x - 3) - x^2(x - 3) - 3x(x - 3) - (x - 3) = (x^3 - x^2 - 3x - 1)(x - 3) Mình đang cố nghĩ nốt con c đây, có vẻ khó^^
a) Ta thấy đa thức \(f\left(x\right)=4x^2+81\) vô nghiệm (*).
Giả sử \(f\left(x\right)\) có thể phân tích được thành nhân tử, khi đó \(f\left(x\right)=\left(ax+b\right)\left(cx+d\right)\), suy ra \(f\) có nghiệm là \(x=-\dfrac{b}{a}\) hoặc \(x=-\dfrac{d}{c}\), mâu thuẫn với (*).
Vậy ta không thể phân tích \(f\left(x\right)\) thành nhân tử.
b) \(g\left(x\right)=x^7+x^2+1\)
\(g\left(x\right)=x^7-x+x^2+x+1\)
\(g\left(x\right)=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
Xét \(h\left(x\right)=x^5-x^4+x^2-x+1\), nếu \(h\left(x\right)\) phân tích được thành nhân tử thì nó có nghiệm hữu tỉ. Khi đó nó có dạng \(x=\dfrac{p}{q},\left(p,q\inℤ;\left(p,q\right)=1\right),p|1,q|1\) \(\Rightarrow x=\pm1\). Ta thấy \(h\left(1\right).h\left(-1\right)\ne0\) nên 2 nghiệm này không thỏa mãn. Vậy h(x) không có nghiệm hữu tỉ \(\Rightarrow\) g(x) không thể phân tích tiếp.
Từ \(4a^2+b^2=5ab\), ta có: \(4a^2-4ab-ab+b^2\)=0
Hay: (a-b) (4a-b)=0
Vì: 2a>b>0 nên 4a-b \(\ne\)0 .
Từ: (.) \(\Rightarrow\)
Từ: a-b=0 . Tức là: a=b
Thay a=b vào C ta được :
C= \(\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{1}{3}\)(do a\(\ne\)0)
4a2=4b2-4a+1
=(2a)2-2*2a*1+12-4b2= (2a-1)2-(2b)2(2a-1-2b)(2a-1+2b)
a)\(2a^2-3ab+b^2\)
=\(a^2+a^2-2ab-ab+b^2\)
=\(\left(a-b\right)^2+a\left(a-b\right)\)
=\(\left(a-b\right)\left(2a-b\right)\)
b)\(x^2-7x-30\)
=\(x^2-10x+3x-30\)
=\(x\left(x-10\right)+3\left(x-10\right)\)
=\(\left(x-10\right)\left(x+3\right)\)
c)\(6a^2-5ab-6b^2\)
=\(6a^2-9ab+4ab-6b^2\)
=\(3a\left(2a-3b\right)+2b\left(2a-3b\right)\)
=\(\left(2a-3b\right)\left(3a+2b\right)\)
d)\(a^4+a^2+1\)
=\(a^4+2a^2-a^2+1\)
=\(\left(a^2+1\right)^2-a^2\)
=\(\left(a^2+1-a\right)\left(a^2+1+a\right)\)
e)\(x^3+6x^2+11x+6\)
=\(x\left(x^2+6x+9+2\right)+6\)
\(=x\left(\left(x+3\right)^2+2\right)+6\)
=\(x\left(x+3\right)^2+2x+6\)
=\(x\left(x+3\right)^2+2\left(x+3\right)\)
=\(\left(x+3\right)\left(x^2+3x+2\right)\)
a. \(-x^3-6x^2+6x+1=-x^3+x^2-7x^2+7x-x+1=\left(1-x\right)\left(x^2+7x+1\right)\)
b. \(x^4-4x^2+4x-1=x^4-1-4x\left(x-1\right)=\left(x-1\right)\left[\left(x+1\right)\left(x^2+1\right)-4x\right]\)
\(=\left(x-1\right)\left(x^3+x^2-3x+1\right)\)
c. \(6x^3-x^2-486x+81=6x^3-54x^2+53x^2-477x-9x+81=\left(x-9\right)\left(6x^2+53x-9\right)\)
\(=\left(x-9\right)\left(x+9\right)\left(6x-1\right)\)
d. \(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)=x^2\left(x^2+8x+16\right)-x^2-8x-16-x^2+1\)
\(=x^4+8x^3+14x^2-8x-15=x^4+5x^3+3x^3+15x^2-x^2-5x-3x-15\)
\(=\left(x+5\right)\left(x^3+3x^3-x-3\right)=\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
Để phân tích nhân tử các dạng này, em cần nhẩm được nghiệm để biết đc nhân tử chung là gì, sau đó tách để xuất hiện nhân tử chung đó. CHÚC EM HỌC TỐT :))
a)a^2-5ab+6b^2
=a^2-2ab-3ab+6b^2
=a(a-2b)-3b(a-2b)
=(a-2b)(a-3b)
b)4a^2-17ab+13b^2
=4a^2-4ab-13ab+13b^2
=4a(a-b)-13(a-b)
=(4a-13)(a-b)
c)4x^4-81
=(2x^2)^2-9^2
=(2x^2-9)(2x^2+9)
=(√2x-3)(√2+3)(2x^2+9)