1 + 1 = 3 khi ???
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 5 ngày đi làm + 2 ngày nghỉ là 7 ngày.
7 ngày là 1 tuần
2. 1 chiếc giày +1 chiếc giày = 1 đôi giày
3. 3 là tam, 4 là tứ. tam* tứ là tứ *tam tứ nhân tam là 8*4=32
4. Khi mình tính sai
a) \(\lim\limits_{x\rightarrow-2}\dfrac{2x^2+x-6}{x^3+8}=\lim\limits_{x\rightarrow-2}\dfrac{\left(2x-3\right)\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\\ =\lim\limits_{x\rightarrow-2}\dfrac{2x-3}{x^2-2x+4}=-\dfrac{7}{12}\).
b) \(\lim\limits_{x\rightarrow3}\dfrac{x^4-x^2-72}{x^2-2x-3}=\lim\limits_{x\rightarrow3}\dfrac{\left(x^2+8\right)\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\\ =\lim\limits_{x\rightarrow3}\dfrac{\left(x^2+8\right)\left(x+3\right)}{x+1}=\dfrac{51}{2}\).
c) \(\lim\limits_{x\rightarrow-1}\dfrac{x^5+1}{x^3+1}=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\lim\limits_{x\rightarrow-1}\dfrac{x^4-x^3+x^2-x+1}{x^2-x+1}=\dfrac{5}{3}\).
d) \(\lim\limits_{x\rightarrow1}\left(\dfrac{2}{x^2-1}-\dfrac{1}{x-1}\right)=\lim\limits_{x\rightarrow1}\left(\dfrac{2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\right)\\ =\lim\limits_{x\rightarrow1}\dfrac{1-x}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{-1}{x+1}=-\dfrac{1}{2}\).
a/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2+1-x^2}{\sqrt{x^2+1}-x}+\lim\limits_{x\rightarrow-\infty}\dfrac{3x^3-1-x^3}{\sqrt[3]{\left(3x^3-1\right)^2}+x\sqrt[3]{3x^3-1}+x^2}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{1}{x}}{-\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}-\dfrac{x}{x}}+\lim\limits_{x\rightarrow-\infty}\dfrac{-\dfrac{1}{x^2}}{\dfrac{\sqrt[3]{\left(3x^3-1\right)^2}}{x^2}+\dfrac{x\sqrt[3]{3x^3-1}}{x^2}+\dfrac{x^2}{x^2}}=0\)
b/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+x-x^2}{\sqrt{x^2+x}+x}+\lim\limits_{x\rightarrow+\infty}\dfrac{x^3-x^3+x^2}{x^2+x\sqrt[3]{x^3-x^2}+\sqrt[3]{\left(x^3-x^2\right)^2}}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}}{\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}}+\dfrac{x}{x}}+\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x^2}{x^2}}{\dfrac{x^2}{x^2}+\dfrac{x\sqrt[3]{x^3-x^2}}{x^2}+\dfrac{\sqrt[3]{\left(x^3-x^2\right)^2}}{x^2}}\)
\(=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
c/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{2x-1-2x-1}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{4x^2-1}+\sqrt[3]{\left(2x+1\right)^2}}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-\dfrac{2}{x^{\dfrac{2}{3}}}}{\dfrac{\sqrt[3]{\left(2x-1\right)^2}}{x^{\dfrac{2}{3}}}+\dfrac{\sqrt[3]{4x^2-1}}{x^{\dfrac{2}{3}}}+\dfrac{\sqrt[3]{\left(2x+1\right)^2}}{x^{\dfrac{2}{3}}}}=0\)
Check lai ho minh nhe :v
`#3107`
`a)`
`A=`\(3x^4 + \dfrac{1}3xyz - 3x^4 - \dfrac{4}3xyz + 2x^2y - 6z\)
`= (3x^4 - 3x^4) + (1/3xyz - 4/3xyz) + 2x^2y - 6z`
`= -xyz + 2x^2y - 6z`
Thay `x = 1; y = 3` và `z = 1/3` vào A
`A = -1*3*1/3 + 2*1^2*3 - 6*1/3`
`= -1 + 6 - 2`
`= 6 - 3`
`= 3`
Vậy, `A=3`
`b)`
`B=`\(4x^3 - \dfrac{2}7xyz - 4x^3 - \dfrac{4}3xyz + 4x^2y\)
`= (4x^3 - 4x^3) + (-2/7xyz - 4/3xyz) + 4x^2y`
`= -34/21 xyz + 4x^2y`
Thay `x = -1; y = 2` và `z = -1/2` vào B
`B = -34/21*(-1)*2*(-1/2) + 4*(-1)^2 * 2`
`= -34/21 + 8`
`= 134/21`
Vậy, `B = 134/21`
`c)`
`C=`\(4x^2 + \dfrac{1}2xyz - \dfrac{2}3xy^2z - 5x^2yz + \dfrac{3}4xyz\)
`= 4x^2 + (1/2xyz + 3/4xyz) - 2/3xy^2z - 5x^2yz `
`= 4x^2 + 5/4xyz - 2/3xy^2z - 5x^2yz`
Ta có:
`|y| = 2`
`=> y = +-2`
Thay `x = -1; y = 2` và `z = 1/2` vào C
`4*(-1)^2 + 5/4*(-1)*2*1/2 - 2/3*(-1)*2^2*1/2 - 5*(-1)^2*2*1/2`
`= 4 - 5/4 + 4/3 - 5`
`= -11/12`
Vậy, với `x = -1; y = 2; z = 1/2` thì `B = -11/12`
Thay `x = -1; y = -2; z = 1/2`
`B = 4*(-1)^2 + 5/4*(-1)*(-2)*1/2 - 2/3*(-1)*(-2)^2*1/2 - 5*(-1)^2*(-2)*1/2`
`= 4 + 5/4 + 4/3 + 5`
`= 139/12`
Vậy, với `x = -1; y = -2; z = 1/2` thì `B = 139/12.`
Bài 1:
a) Ta có: A=x(x-2)-x(x-3)-2x+1
\(=x^2-2x-x^2+3x-2x+1\)
\(=1-x\)(1)
Thay x=2 vào biểu thức (1), ta được:
A(2)=1-2=-1
Vậy: -1 là giá trị của biểu thức A=x(x-2)-x(x-3)-2x+1 khi x=2
b) Ta có: \(B=x\left(x-3\right)-\left(x-1\right)^2+2x-1\)
\(=x^2-3x-\left(x^2-2x+1\right)+2x-1\)
\(=x^2-x-1-x^2+2x-1\)
\(=x-2\)(2)
Thay x=5 vào biểu thức (2), ta được:
B(5)=5-2=3
Vậy: 3 là giá trị của biểu thức \(B=x\left(x-3\right)-\left(x-1\right)^2+2x-1\) khi x=5
c) Ta có: \(C=\left(x+1\right)^2-\left(x-2\right)^2-3x+4\)
\(=x^2+2x+1-\left(x^2-4x+4\right)-3x+4\)
\(=x^2+2x+1-x^2+4x-4-3x+4\)
\(=3x+1\)(3)
Thay x=-3 vào biểu thức (3), ta được:
\(C\left(-3\right)=3\cdot\left(-3\right)+1\)
=-9+1=-8
Vậy: -8 là giá trị của biểu thức \(C=\left(x+1\right)^2-\left(x-2\right)^2-3x+4\) khi x=-3
a: Khi x=1/3 thì \(A=3\cdot\dfrac{1}{9}-6\cdot\dfrac{1}{3}+5=\dfrac{10}{3}\)
Khi x=-2 thì \(A=3\cdot4-6\cdot\left(-2\right)+5=12+12+5=29\)
b: Trường hợp 1: x=2; y=-3
\(C=2\cdot2^2-3\cdot2\cdot\left(-3\right)+4\cdot\left(-3\right)^2=62\)
Trường hợp 2: x=-2; y=-3
\(C=2\cdot\left(-2\right)^2-3\cdot\left(-2\right)\cdot\left(-3\right)+4\cdot\left(-3\right)^2=26\)
1 + 1
= 3
Khi ta đổi thành:
1 + 1 = 3 - 1
CHúc bạn luôn xinh đẹp nhé!
khi ta làm sai