Tìm x,y biết :
\(\frac{1}{x}+\frac{1}{y}=\frac{2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)
Tự làm nốt và kết luận
b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ....
a) Ta có: \(\frac{x-y}{3}=\frac{x+y}{2}=\frac{1}{2}\Rightarrow x+y=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x-y}{3}=\frac{x+y}{2}=\frac{x-y+x+y}{3+2}=\frac{2x}{5}=\frac{1}{2}\Rightarrow x=\frac{5}{4}\Rightarrow y=1-\frac{5}{4}=-\frac{1}{4}\)
b) Ta có: \(\frac{2x-5}{y+1}=\frac{x-1}{3y}=\frac{1}{3}\Rightarrow3\left(x-1\right)=3y\Rightarrow x-1=y\)
Thay vào \(y+1\Rightarrow\frac{2x-5}{y+1}=\frac{2x-5}{x}=2-\frac{5}{x}=\frac{1}{3}\Rightarrow\frac{5}{x}=\frac{5}{3}\Rightarrow x=3;y=2\)
\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)=\(\frac{1}{x+y+z}\)
\(\frac{\left(y+z+x+z+x+y\right)+\left(1+2-3\right)}{x+y+z}\)=\(\frac{1}{x+y+z}\)
\(\frac{2x+2y+2x}{x+y+z}\)=\(\frac{1}{x+y+z}\)
2=\(\frac{1}{x+y+z}\)(1)
Từ(1) => \(\frac{1}{x+y+z}\)=2 => x+y+z=0,5=>x+z=0,5-y(2)
Từ(1)=> x+y+1=2x(3)
x+z+2=2y(4)
z+y-3=2z(5)
Thay(2) vào (4) ta được: 0,5-y+2=2y
=> 2,5=3y
=> y=\(\frac{5}{6}\)
Thay y=\(\frac{5}{6}\)vào(3) ta được:x+\(\frac{5}{6}\)+1=2x
\(\frac{11}{6}\)=x
Thay x=\(\frac{11}{6}\); y=\(\frac{5}{6}\)vào x+y+z=0,5 ta đươc:
\(\frac{11}{6}\)+\(\frac{5}{6}\)+z=0,5
z=\(\frac{-13}{6}\)
Vậy ............
chúc bn học tốt.
k cho mik nha
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Hình như đề đúng phải là: \(\frac{x+z+2}{y}=\frac{y+z+1}{x}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)bạn xem lại nhé :)))
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+z+2}{y}=\frac{y+z+1}{x}=\frac{x+y-3}{z}=\frac{\left(x+z+2\right)+\left(y+z+1\right)+\left(x+y-3\right)}{x+y+z}\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(do \(x+y+z\ne0\)).
Do đó \(\frac{1}{x+y+z}=2\)\(\Rightarrow\)\(x+y+z=0,5\)
Thay kết quả này vào đề bài ta được:
\(\frac{0,5-y+2}{y}=\frac{0,5-x+1}{x}=\frac{0,5-z-3}{z}=2\)
\(\Leftrightarrow\)\(\frac{2,5-y}{y}=\frac{1,5-x}{x}=\frac{-2,5-z}{z}=2\)\(\Leftrightarrow\)\(\frac{2,5}{y}=\frac{1,5}{x}=\frac{-2,5}{z}=3\)
Dễ dàng tính được \(y=\frac{5}{6},\)\(x=\frac{1}{2},\)\(z=\frac{-5}{6}\)
Câu 1,
x+y=-1/3 ; y+z=5/4 ; x+z= 4/3
=> 2(x+y+z)=9/4
=> x+y+z=9/8
Ta lại có: x+y=-1/3
=> z=9/8 -(-1/3)=35/24
Ta lại có: z+y=5/4
=> y=-5/24
=> x=.....
Câu 2:
\(-4\le x\le-\frac{11}{18}\)
trong phép cộng hai phân số thì hai mẫu số vẫn giữ nguyên
=> x= 3 và y= 3