tinh
|x-23|^2007+|y-1|^234
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì |X-12|^234=0;|Y+23|^233=0
=>|X-12|^234+|Y+23|^233=0\
=>DẤU = XẢY R KHI |X-12|^234=0;|Y+23|^233=0
=>X=12=>Y=-23
100 nha bạn, chúc bạn học giỏi!
100 nha bạn, chúc bạn học giỏi!
100 nha bạn, chúc bạn học giỏi!
100 nha bạn, chúc bạn học giỏi!
12 = (x+ y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx) = 1+ 2(xy + yz+ zx) => xy + yz + zx= 0
1 = (x+y+z)3 = (x + y)3 + z3 + 3(x+ y+z)z(x+ y) = x3 + y3 + z3 + 3xy(x+ y) + 3(x+ y)z
= 1 + 3xy(1 - z) + 3(xz + yz) = 1 - 3xyz + 3(xy + xz + yz) = 1 - 3xyz (do xy + xz + yz = 0 )
=> xyz = 0
+) 0 = (xy + yz + zx)2 = x2y2 + y2z2 + z2x2 + 2xyz. (y + x + z) = x2y2 + y2z2 + z2x2
=> x2y2 + y2z2 + z2x2 = 0 => xy = 0 và yz = 0 và zx = 0 => có 2 trong 3 số x; y; z = 0 và số còn lại bằng 1 (vì x + y + z = 1)
=> P = 1
a, |x-3y|^2007+|y+4|^2008
<=>|x-3y|^2007|=0=>|x-3y|=0 =>x-3y=0 (1)
<=>|y+4|^2008=0=>|y+4|=0=>y+4=0 (2)
tu 1,2 => y=-4 =>x=-12
b, <=>(x+y)^2016=0=>x+y=0 (1)
<=>2017|y-1|=0=>|y-1|=0=>y-1=0 (2)
tu 1, 2 =>y=1=>x=-1
+> Lấy (x + y + z)^2 = x^2+y^2+z^2+2xy+2yz+2xz = 1+2xy+2yz+2xz
Mà (x + y + z)^2 = 1
=> 2xy+2yz+2xz = 0
=> xy+yz+xz = 0
=> (xy+yz+xz)(x + y + z) = 0
+> Lấy (x + y + z)^3 = x^3 + y^3 + z^3 + 6xyz + 3xy^2 + 3x^2y + 3x^2z + 3xz^2 + 3yz^2 + 3y^2z = 1 + 6xyz + 3xy^2 + 3x^2y + 3x^2z + 3xz^2 + 3yz^2 + 3y^2z
Mà (x + y + z)^3 = 1
=> 6xyz + 3xy^2 + 3x^2y + 3x^2z + 3xz^2 + 3yz^2 + 3y^2z = 0
=> 6xyz + 3(xy^2 + x^2y + x^2z + xz^2 + yz^2 + y^2z) = 0
=> 6xyz + 3[xy(x+y) + xz(x+z) + yz(y+z)] = 0
=> 6xyz + 3[xy(1-z) + xz(1-y) + yz(1-x)] = 0
=> 6xyz + 3(xy - xyz + xz - xyz + yz - xyz) = 0
Mà xy+yz+xz = 0
=> 6xyz - 9xyz = 0
=> xyz = 0
Mà (xy+yz+xz)(x + y + z) = 0
=> (xy+yz+xz)(x + y + z) = xyz
=> (xy+yz+xz)(x+y+z) - xyz = 0
Phân tích đa thức trên thành nhân tử, ta có (x+y)(y+z)(x+z) = 0
=> x+y = 0 ; y+z = 0 ; x+z = 0
Có x^2017 + y^2017 + z^2017
= (x+y)(x^2017 -x^2016y+...+y^2017) + z^2017 (1)
= z^ 2017
Có x+y = 0 => x = -y
=> (x + y + z )^2017 = z^2017 (2)
Từ (1) và (2) = > x^2017 + y^2017 + z^2017 = (x + y + z )^2017 = 1
kim chiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
|X-5|^2007=0=>|X-5|=0=>X-5=0=
|Y-4|^287=0=>|Y-4|=0=>Y-4=0
=>X=5=
=>Y=4
Ta có :
\(\left|x-5\right|^{2007}\ge0\)
\(\left|y-4\right|^{287}\ge0\)
Mà đề cho \(\left|x-5\right|^{2007}+\left|y-4\right|^{287}=0\)
\(\Rightarrow\hept{\begin{cases}\left|x-5\right|^{2007}=0\\\left|y-4\right|^{287}=0\end{cases}\Rightarrow\hept{\begin{cases}\left|x-5\right|=0\\\left|y-4\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}}\)
Câu 2: B
Câu 3: A
Câu 1:
Ta có: \(5^{x+3}+5^x=126\cdot5^3\)
\(\Leftrightarrow5^x\left(5^3+1\right)=126\cdot5^3\)
\(\Leftrightarrow5^x=5^4\)
hay x=4
ta có
|x-3y|^2007=0 => |x-3y|=0=>x-3y=0
<=>|y+4|^2008=0=>|y+4|=0=>y+4=0
=>y=-4=>x=-12
Vì \(\left|x+23\right|^{2007}\ge0;\left|y-1\right|^{234}\ge0\)
\(\Rightarrow\left|x+23\right|^{2007}+\left|y-1\right|^{234}\ge0\)
Dấu "=" xảy ra <=> \(\orbr{\begin{cases}\left|x+23\right|^{2007}=0\\\left|y-1\right|^{234}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-23\\y=1\end{cases}}}\)
x=-23
y=1