BÀI4:Cho tam giác ABC có ba đường phân giác AD,BE,CF.
Chứng minh:
a,\(\frac{DB}{CD}.\frac{EC}{EA}.\frac{FA}{FB}=1\)
b,\(\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}>\frac{1}{BC}+\frac{1}{CA}+\frac{1}{AB}\)
(chỉ cần giải câu b thôi)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất đường phân giác ta có:
\(\frac{DB}{DC}=\frac{AB}{AC}\left(1\right)\)
\(\frac{EC}{EA}=\frac{BC}{BA}\left(2\right)\)
\(\frac{FA}{FB}=\frac{CA}{CB}\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{DB}{DC}\cdot\frac{EC}{AE}\cdot\frac{FA}{FB}=\frac{AB}{AC}\cdot\frac{BC}{BA}\cdot\frac{CA}{CB}=\frac{AB\cdot BC\cdot CA}{AC\cdot BA\cdot CB}=1\)
=> ĐPCM
Nguồn: SGK
AD,BE,CF không là các đường phân giác vẫn đúng,miễn sao chúng đồng quy là OK !
#)Giải :
Vì AD,BE,CF là ba đường phân giác
\(\Rightarrow\frac{FA}{FB}=\frac{CA}{CB};\frac{DB}{DC}=\frac{AB}{AC};\frac{EC}{EA}=\frac{BC}{BA}\)
\(\Rightarrow\frac{FA}{FB}.\frac{DB}{DC}.\frac{EC}{EA}=\frac{CA.AB.BC}{CB.AC.BA}=1\left(đpcm\right)\)
Tham khảo tại :
Câu hỏi của Phạm Hoàng - Toán lớp 8 | Học trực tuyến
< https://h.vn/hoi-dap/question/555217.html >
~ chúc bn học tốt~
Bài này bọn e đã từng làm rồi, có trong đề thi HSG Toán lớp 8 tỉnh Bắc Giang , anh tham khảo nhé :
Đặt \(BC=a,CA=b,AB=c.\) Độ dài các đường phân giác trong của tam giác kẻ từ các đỉnh A,B,C lần lượt là \(l_a,l_b,l_c\).
a) Ta có: \(\dfrac{DB}{DC}\cdot\dfrac{EC}{EA}\cdot\dfrac{FA}{FB}\)
\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}\)
=1
Vì AD là đường cao nên AD < AB (Quan hệ giữa đường vuông góc và đường xiên)
\(\Rightarrow\frac{1}{AD}>\frac{1}{AB}\)
Chứng minh tương tự:
\(\frac{1}{BE}>\frac{1}{BC};\frac{1}{CF}>\frac{1}{BC}\)
Cộng tương ứng 2 vế của các bất phương trình ta có điều phải chứng minh.
\(\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}>\frac{1}{AB}+\frac{1}{AC}+\frac{1}{BC}\left(đpcm\right)\)