Nếu phương trình \(3x^2+5y=28\) có ngiệm nguyên (\(x_0;y_0\)) thì \(x_0\)chia cho 5 có số dư là .......................................
các bạn giải giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 5y2 chia hết cho 5; 345 chia hết cho 5.
Vậy: 3x2 phải chia hết cho 5.
=> x chia hết cho 5
Trường hợp 1: x = 0
=> PT vô nghiệm.
Trường hợp 2: x = 5
=> PT vô nghiệm
Trường hợp 3: x = 10
=> PT có nghiệm x = 10; y = 3
Trường hợp 4: x >= 15
=> VT > VP
=> PT có nghiệm duy nhất: x = 10, y = 3.
3x2 + 5y = 28
=> 3x2 ≤ 28
=> x2 ≤ 9
=> x ≤ 3
Xét x = 0 => 5y = 28 ( loại )
Xét x = 1 => 3 + 5y = 28 => y = 5
Vì 1 chia 5 dư 1 => x0 chia 5 dư 1
28 chia cho 5 dư 3, 5y chia hết cho 5 => 3x2 chia cho 5 dư 3
=> x2 chia cho 5 dư 1
=> x chia cho 5 dư 1 hoặc 4