tím x a) 12 . ( x - 4 ) + 3 . ( 2x + 5 ) = 16
b) -10 . ( 2x + 4 ) - 2 . ( 6 - 15x ) = 48
ai giup mik vs mik k cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2\(x\) + 4 - 5\(x\) = -11
-(5\(x\) - 2\(x\)) + 4 = -11
-3\(x\) + 4 = -11
3\(x\) = 11 + 4
3\(x\) = 15
\(x\) = 15 : 3
\(x\) = 5
b, \(x\) - (-5) = 8
\(x\) + 5 = 8
\(x\) = 8 - 5
\(x\) = 3
B2
( a3 + a2b + ab2 + b3 ).( a - b ) = a4 - b4
[( a3 + b3 + ab.( a + b )].( a - b ) = a4 - b4
[( a + b ).( a2 - ab + b2 ) + ab.( a + b )].( a - b ) = a4 - b4
( a + b ).( a2 - ab + b2 + ab ).( a - b ) = a4 - b4
( a + b ).( a2 + b2 ).( a - b ) = a4 - b4
( a2 - b2 ).( a2 + b2 ) = a4 - b4
a4 - b4 = a4 - b4 ( đpcm )
a) \(-\frac{3}{4}x+\frac{1}{6}x=1-2\frac{5}{9}\)
\(\left(-\frac{3}{4}+\frac{1}{6}\right).x=1-\frac{23}{9}\)
\(-\frac{7}{12}.x=-\frac{14}{9}\)
\(x=-\frac{14}{9}:\left(-\frac{7}{12}\right)\)
\(x=\frac{8}{3}\)
Vậy x = ...
b) \(\left|2x-\frac{3}{8}\right|+2\frac{3}{4}=3\frac{1}{16}\)
\(\left|2x-\frac{3}{8}\right|+\frac{11}{4}=\frac{49}{16}\)
\(\left|2x-\frac{3}{8}\right|=\frac{49}{16}-\frac{11}{4}\)
\(\left|2x-\frac{3}{8}\right|=\frac{5}{16}\)
\(\Rightarrow\left|2x-\frac{3}{8}\right|\in\text{{}\frac{5}{16};-\frac{5}{16}\)}
Nếu, \(2x-\frac{3}{8}=\frac{5}{16}\)
\(2x=\frac{11}{16}\)
\(x=\frac{11}{32}\)
Nếu, \(2x-\frac{3}{8}=-\frac{5}{16}\)
\(2x=\frac{1}{16}\)
\(x=\frac{1}{32}\)
Vậy \(x\in\text{{}\frac{1}{32};\frac{11}{32}\)}
a) 5 - 4x = 3x - 9
\(\Leftrightarrow5-4x-3x+9=0\)
\(\Leftrightarrow14-7x=0\)
\(\Leftrightarrow7x=14\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
b) \(\left(x-4\right)\left(3x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-3;4\right\}\)
c) \(\dfrac{x}{x+4}+\dfrac{12}{x-4}=\dfrac{4x+48}{x\cdot x-16}\)(1)
ĐKXĐ: \(x\ne\pm4\)
\(\left(1\right)\Leftrightarrow\dfrac{x\left(x-4\right)+12\left(x+4\right)-4x-48}{\left(x+4\right)\left(x-4\right)}=0\)
\(\Leftrightarrow x^2-4x+12x+48-4x-48=0\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-4\left(KTM\right)\end{matrix}\right.\)
Vậy \(S=\left\{0\right\}\)
d) \(4-2x=7-x\)
\(\Leftrightarrow4-2x-7+x=0\)
\(\Leftrightarrow-x-3=0\)
\(\Leftrightarrow-x=3\Leftrightarrow x=-3\)
Vậy \(S=\left\{-3\right\}\)
e) \(\left(x+4\right) \left(8-4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\8-4x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{-4;2\right\}\)
f) \(\dfrac{x}{x+5}+\dfrac{11}{x-5}=\dfrac{x+55}{x\cdot x-25}\left(2\right)\)
ĐKXĐ: \(x\ne\pm5\)
\(\left(2\right)\Leftrightarrow\dfrac{x\left(x-5\right)+11\left(x+5\right)-x-55}{\left(x+5\right)\left(x-5\right)}=0\)
\(\Leftrightarrow x^2-5x+11x+55-x-55=0\)
\(\Leftrightarrow x^2+5x=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-5\left(KTM\right)\end{matrix}\right.\)
Vậy \(S=\left\{0\right\}\)
g) \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)-3x-1-10-12x}{6}=0\)
\(\Leftrightarrow9x+6-3x-1-10-12x=0\)
\(\Leftrightarrow-6x-5=0\)
\(\Leftrightarrow-6x=5\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
Vậy \(S=\left\{-\dfrac{5}{6}\right\}\)
h) \(2x-\left(3-5x\right)=4\left(x+3\right)\)
\(\Leftrightarrow2x-3+5x-4x-12=0\)
\(\Leftrightarrow3x-15=0\)
\(\Leftrightarrow x=5\)
Vậy \(S=\left\{5\right\}\)
i) \(3x-6+x=9-x\)
\(\Leftrightarrow3x-6+x-9+x=0\)
\(\Leftrightarrow5x-15=0\)
\(\Leftrightarrow x=3\)
Vậy \(S=\left\{3\right\}\)
k)\(2t-3+5t=4t+12\)
\(\Leftrightarrow2t-3+5t-4t-12=0\)
\(\Leftrightarrow3t-15=0\)
\(\Leftrightarrow t=5\)
Vậy \(S=\left\{5\right\}\)
18 - 4\(x\) = -20 - 6\(x\)
-4\(x\) + 6\(x\) = - 20 - 18
2\(x\) = - 38
\(x\) = - 19
h, -15 \(\times\) 24 = -7\(x\) + 32
7\(x\) = 360 + 32
7\(x\) = 392
\(x\) = 392:7
\(x\) = 56
i, 15\(x\) -3.(4\(x\) - 6) = -12 + 36
15\(x\) - 12\(x\) + 18 = 24
3\(x\) = 24 - 18
3\(x\) = 6
\(x\) = 2
k, -10\(x\) - 27 = -7\(x\) + 33
-27 - 33 = -7\(x\) + 10\(x\)
3\(x\) = -60
\(x\) = -20
a; \(\dfrac{2}{3}\)\(x\) - \(\dfrac{3}{2}\)\(x\) = \(\dfrac{5}{12}\)
(\(\dfrac{2}{3}\) - \(\dfrac{3}{2}\))\(x\) = \(\dfrac{5}{12}\)
- \(\dfrac{5}{6}\)\(x\) = \(\dfrac{5}{12}\)
\(x\) = \(\dfrac{5}{12}\) : (- \(\dfrac{5}{6}\))
\(x=\) - \(\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
b; \(\dfrac{2}{5}\) + \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\) - \(\dfrac{2}{5}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = - \(\dfrac{57}{10}\)
3\(x\) - 3,7 = - \(\dfrac{57}{10}\) : \(\dfrac{3}{5}\)
3\(x\) - 3,7 = - \(\dfrac{19}{2}\)
3\(x\) = - \(\dfrac{19}{2}\) + 3,7
3\(x\) = - \(\dfrac{29}{5}\)
\(x\) = - \(\dfrac{29}{5}\) : 3
\(x\) = - \(\dfrac{29}{15}\)
Vậy \(x\) \(\in\) - \(\dfrac{29}{15}\)
b)x(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12
<=> 3x^2 +2x +x^2+2x+1 - 4x^2 +25 +12=0
<=> 4x+38=0
=>4x= -38
=>x= -38/4= -19/2
a) => (12x-4)+(6x+15)=16
=>12x-48+6x+15=16
=>(12x+6x)-(15-48)=16
=>18x-(-33)=16
=>18x=16+(-33)
=>18x=-17
=>x=-17/18
KL
b) =>(-20x+(-40))-(12-30x)=48
=>-20x+(-40)-12+30x=48
=>(-20x+30x)+(-40-12)=48
=>10x+(-52)=48
=>10x=48-(-52)
=>10x=4
=>x=4/10
KL
a) 12( x - 4 ) + 3( 2x + 5 ) = 16
<=> 12x - 48 + 6x + 15 = 16
<=> 18x - 33 = 16
<=> 18x = 49
<=> x = 49/18
b) -10( 2x + 4 ) - 2( 6 - 15x ) = 48
<=> -20x - 40 - 12 + 30x = 48
<=> 10x - 52 = 48
<=> 10x = 100
<=> x = 10