\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+......+\frac{1}{y\times\left(y+1\right):2}=\frac{2009}{2011}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=\frac{2009}{2011}\)
tách vế trái đặt là A
ta lại có\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}\)
\(\frac{1}{2}A=\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x.\left(x+1\right):2}\right)\)
\(\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x.\left(x+1\right)}\)
\(\frac{1}{2}A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\)
\(\frac{1}{2}A=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{x}-\frac{1}{x+1}\right)\)
\(\frac{1}{2}A=\frac{1}{2}-\frac{1}{x+1}\)
\(A=\left(\frac{1}{2}-\frac{1}{x+1}\right):\frac{1}{2}\)
\(A=1+\frac{1}{\left(x+1\right):2}\)
ta thế vào vế trái vào vế phải
ta có\(1+\frac{1}{\left(x+1\right):2}=\frac{2009}{2011}\)
\(\frac{1}{\left(x+1\right):2}=\frac{2009}{2011}-1\)
\(\frac{1}{\left(x+1\right):2}=\frac{2009}{2011}-\frac{2011}{2011}=-\frac{2}{2011}\)
\(-\frac{2}{-\left(x+1\right)}=-\frac{2}{2011}\)
thấy hai tử bằng nhau
\(\Rightarrow-\left(x+1\right)=2011\)
\(\Rightarrow\left(x+1\right)=-2011\)
\(\Rightarrow x=-2011-1=-2012\)
\(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2011}:2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2011}\)
\(\Leftrightarrow x+1=2011\)
\(\Leftrightarrow x=2010\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.......+\frac{1}{x\times\left(x+1\right)\div2}=\frac{2009}{2011}\)
\(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.......+\frac{1}{x\times\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(2\times\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(1-\frac{2}{x+1}=\frac{2009}{2011}\)
\(\frac{2}{x+1}=1-\frac{2009}{2011}\)
\(\frac{2}{x+1}=\frac{2}{2011}\)
\(x+1=2011\)
\(x=2011-1\)
\(\Rightarrow x=2010\)