tìm dạng chung cả các số tự nhiên a chia cho 4 thì dư 3,chia cho 5 thì dư 4,chia cho 6 thì dư 5 và chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a chia cho 4 thì dư 3, chia cho 5 thì dư 4, chia cho 6 thì dư 5
\(\Rightarrow\)a + 1 \(⋮\)4,5,6
nên a + 1 \(⋮\) BCNN ( 4,5,6 )
\(\Rightarrow\)a + 1 \(⋮\)60
vì a + 1 \(⋮\)60 \(\Rightarrow\)a + 1 - 300 \(⋮\)60 hay a - 299 \(⋮\)60 ( 1 )
a \(⋮\)13 \(\Rightarrow\)a - 13 . 23 \(⋮\)13 hay a - 299 \(⋮\)13 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a - 299 \(⋮\)BCNN ( 60 ; 13 ) = 780
vậy dạng chung của a là : a = 780k + 299 ( k thuộc N )
Gọi a là STN cần tìm
Ta có:
a chia hết cho 2
a chia hết cho 11
=>a là BCNN(2;11)
2=2
11=11
=>BCNN(2;11)=11.2=22
=>a=22
Vậy số cần tìm là 22
gọi số cần tìm là n (100<n<999)
n-1 chia hết cho 2 => (n-1)+1 chia hết cho 2 => n+1 chia hết cho 2
n-2 chia hết cho 3 => (n-2)+2 chia hết cho 3 => n+1 chia hết cho 3
n-3 chia hết cho 2 => (n-3)+3 chia hết cho 2 => n+1 chia hết cho 4
n-4 chia hết cho 2 => (n-4)+4 chia hết cho 2 => n+1 chia hết cho 5
n-5 chia hết cho 3 => (n-5)+5 chia hết cho 3 => n+1 chia hết cho 6
=> n+1 thuộc BC(2,3,4,5,6)
Ta có
BCNN(2,3,4,5,6)=60
BC(2,3,4,5,6)=B(60)={0,60,120,......,960,1020,....}
100<n<999 => n=960-1=959
dạng chung của các số tự nhiên a chia 4 dư 1;chia 5 dư 4; chia 6 dư 5;chia hết cho 13 lần lượt là:4k+1;5k+4;6k+5;13k(trong đó k thuộc N*)
a chia cho 4 dư 3 có dạng :
4k + 3
a chia cho 5 dư 4 có dạng :
5q + 4
a chia cho 6 dư 5 có dạng :
6k + 5
a chia hết cho 13 có dạng :
13k
a) Gọi số cần tìm là a , ta có :
a + 2 sẽ chia hết cho cả 3 , 4 và 5
\(BCNN\left(3,4,5\right)=3.4.5=60\)
\(\Rightarrow a=60n-2=2\left(30n-1\right)\)( với n là số tự nhiên )
Mà \(a⋮13\)nên \(30n-1⋮13\)
Gía trị nhỏ nhất của a thỏa mãn khi \(n=10\)
\(\Rightarrow a=2.\left(300-1\right)=598\)
Vậy số tự nhiên đó là 598