🎁 OLM khai giảng khóa học hè. XEM NGAY!!!
OLM Class: Học trực tiếp cùng giáo viên OLM (hoàn toàn mới)!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+....+\frac{1}{10^2+11^2}<\frac{9}{20}\)
đơn giải thôi nhưng mình ko bấn fx đc
xét vế trái : \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{221}\)
ta có : \(T< \frac{1}{5}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{220}\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{11}\right)< \frac{1}{5}+\frac{1}{4}\Rightarrow T< \frac{9}{20}\)
Chứng tỏ rằng:
Chứng minh \(\forall n\in\)N* thì\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{n^2+\left(n+1\right)^2}< \frac{9}{20}\)
Khó phét ta
1.CMR:
a) Cho a, b, c là các số nguyên dương
\(1<\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<2\)
b) \(S3=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{10^2+11^2}<\frac{9}{20}\)
Chứng minh rằng:
1)B=\(\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}< 100\)
2)C=\(\frac{5}{5.8.11}+\frac{5}{8.11.14}+...+\frac{5}{302.305.308}\)<\(\frac{1}{48}\)
3)D=\(\frac{11}{9}+\frac{18}{16}+\frac{27}{25}+...+\frac{1766}{1764}\)
\(40\frac{20}{43}< D< 40\frac{20}{21}\)
Bài 1 ; \(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+......+\frac{1}{1+2+3+4+.....+2010}\)
Bài 2 : CHỨNG MINH RẰNG: Với mọi số nguyên n>1 , ta có :
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+.....+\frac{1}{n^2+\left(n+1\right)^2}< \frac{9}{20}\)
Chứng minh :
1,C=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}.C< \frac{3}{4}\)
2,D=\(\frac{1}{5^2}+\frac{1}{9^2}+...+\frac{1}{409^2}< \frac{1}{12}\)
3,E=\(\frac{5}{5.8.11}+\frac{5}{8.11.14}+...+\frac{5}{302.305.308}< \frac{1}{48}\)
Bài 1 : Cho A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}...\frac{79}{80}\)
Chứng minh rằng A < \(\frac{1}{9}\)
Bài 4 : Chứng minh rằng: 1.3.5.7....19 = \(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}...\frac{20}{2}\)
Chứng minh:
c.\(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{59}+\frac{1}{60}< \frac{3}{2}\)
b.\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{113}< \frac{1}{2}\)
a.\(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}< \frac{1}{2}\)
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}<\frac{1}{2}\)
đơn giải thôi nhưng mình ko bấn fx đc
xét vế trái : \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{221}\)
ta có : \(T< \frac{1}{5}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{220}\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{11}\right)< \frac{1}{5}+\frac{1}{4}\Rightarrow T< \frac{9}{20}\)