K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2022

loading...  

12 tháng 11 2022

....

28 tháng 6 2021

\(C=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{x-1-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right):\left(\dfrac{\sqrt{x}+1-2}{x-1}\right)\)

\(=\left(\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2}.\left(\sqrt{x}+1\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

 

 

Ta có: \(C=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)^2}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\left(\dfrac{\sqrt{x}+1-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)^2}:\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

d) Ta có: \(D=\left(\sqrt{x}+\dfrac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\dfrac{x}{\sqrt{xy}+y}+\dfrac{y}{\sqrt{xy}-x}-\dfrac{x+y}{\sqrt{xy}}\right)\)

\(=\left(\dfrac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\dfrac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}+\dfrac{y}{\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)}-\dfrac{\left(x+y\right)\left(x-y\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)

\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}:\left(\dfrac{x\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)-y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)-x^2+y^2}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)

\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}:\dfrac{x^2-x\sqrt{xy}-y\sqrt{xy}-y^2-x^2+y^2}{\sqrt{xy}\left(\sqrt{x}-y\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}:\dfrac{-\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{xy}\cdot\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{-\sqrt{xy}\left(x+y\right)}\)

\(=-1\)

e) Ta có: \(E=\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\right)\cdot\dfrac{x-1}{2x+\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\cdot\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)-\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(2x-3\sqrt{x}+1\right)-x\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{2x\sqrt{x}-3x+\sqrt{x}-x\sqrt{x}-x-\sqrt{x}}{x+\sqrt{x}+1}\cdot\dfrac{1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{x\sqrt{x}-4x}{x+\sqrt{x}+1}\cdot\dfrac{1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{x\sqrt{x}-4x+\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-4x+x\sqrt{x}+x+\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{2x\sqrt{x}-3x+\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}\)

 

m) Ta có: \(M=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2}{a-1}\right)\)

\(=\left(\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\sqrt{a}-1-2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-3}\)

\(=\left(\sqrt{a}-1\right)\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}\left(\sqrt{a}-3\right)}\)

28 tháng 6 2021

`a)(sqrtx-3)/(sqrtx-2)-(2sqrtx-1)/(sqrtx-1)+(x-2)/(x-3sqrtx+2)`

`=(x-4sqrtx+3-(2sqrtx-1)(sqrtx-2)+x-2)/(x-3sqrtx+2)`

`=(2x-4sqrtx+1-2x+5sqrtx-2)/(x-3sqrtx+2)`

`=(sqrtx-1)/(x-3sqrtx+2)`

`=1/(sqrtx-2)`

`b)((x+2)/(xsqrtx-1)-sqrtx/(x+sqrtx+1)+1/(1-sqrtx)):(sqrtx-1)/2`

`=((x+2-x+sqrtx-x-sqrtx-1)/(xsqrtx-1))*2/(sqrtx-1)`

`=(1-x)/(xsqrtx-1)*2/(sqrtx-1)`

`=(-2(sqrtx+1))/(x+sqrtx+1)`

a) Ta có: \(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-4\sqrt{x}+3-2x+4\sqrt{x}+\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}-2}\)

b) Ta có: \(\left(\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{-\sqrt{x}+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{-2\sqrt{x}-2}{x\sqrt{x}-1}\)

a: \(A=\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(x-\sqrt{x}+1-\sqrt{x}\right)\)

\(=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)

b: A=3

=>căn x-1=3

=>căn x=4

=>x=16

c: A<=5

=>căn x-1<=5

=>căn x<=6

=>0<=x<=36

=>\(x\in\left\{0;2;3;4;...;36\right\}\)

27 tháng 10 2023

a: Khi x=25 thì \(A=\dfrac{5-2}{5-3}=\dfrac{3}{2}\)

b: P=A*B

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\left(\dfrac{6x+6\sqrt{x}-12}{x+5\sqrt{x}+4}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\left(\dfrac{6x+6\sqrt{x}-12}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\dfrac{6x+6\sqrt{x}-12-5x-5\sqrt{x}}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

c: \(\sqrt{P}< =\dfrac{1}{2}\)

=>0<=P<=1/4

=>\(\left\{{}\begin{matrix}P>=0\\P-\dfrac{1}{4}< =0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{x}-2}{\sqrt{x}-1}>=0\\\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{1}{4}< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{4\left(\sqrt{x}-2\right)-\sqrt{x}+1}{4\left(\sqrt{x}-1\right)}< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{3\sqrt{x}-7}{\sqrt{x}-1}< =0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< \sqrt{x}< =\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< x< \dfrac{49}{9}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\x=\dfrac{49}{9}\end{matrix}\right.\)

=>\(4< =x< =\dfrac{49}{9}\)

mà x nguyên

nên \(x\in\left\{4;5\right\}\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{2x-4\sqrt{x}+\sqrt{x}-2}-\dfrac{x}{\sqrt{x}-2}\right)\cdot\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-1-x}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}=\dfrac{-\sqrt{x}+1}{\sqrt{x}-2}\)

27 tháng 9 2023

\(A=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\left(x\ge0;x\ne25\right)\)

Để \(A=\dfrac{2\sqrt{x}}{3}\) thì:

\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{2\sqrt{x}}{3}\)

\(\Leftrightarrow3\sqrt{x}-15=2x+10\sqrt{x}\)

\(\Leftrightarrow2x+10\sqrt{x}-3\sqrt{x}+15=0\)

\(\Leftrightarrow2x+7\sqrt{x}+15=0\) 

Mà \(2x+7\sqrt{x}+15>0\) (vì \(x\ge0\))

nên không tìm được giá trị nào của \(x\) thoả mãn \(A=\dfrac{2\sqrt{x}}{3}\)

#\(Toru\)

27 tháng 9 2023

Có \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=1-\dfrac{10}{\sqrt{x}+5}\)

Dễ thấy \(\dfrac{10}{\sqrt{x}+5}>0\forall x\Rightarrow A=1-\dfrac{10}{\sqrt{x}+5}< 1\)

=> A < 2

16 tháng 7 2018

\(A=\left(\dfrac{\sqrt{x}}{1-\sqrt{x}}+\dfrac{\sqrt{x}}{1+\sqrt{x}}\right)+\dfrac{3\sqrt{x}}{x-1}\\ =\left(\dfrac{\sqrt{x}\left(1+\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right)+\dfrac{3\sqrt{x}}{x-1}\\ =\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}+\dfrac{3\sqrt{x}}{x-1}\\ =\dfrac{2\sqrt{x}-3\sqrt{x}}{1-x}=\dfrac{\sqrt{x}}{x-1}\)

16 tháng 7 2018

\(A=\dfrac{\sqrt{x}}{1-\sqrt{x}}+\dfrac{\sqrt{x}}{1+\sqrt{x}}+\dfrac{3\sqrt{x}}{x-1}=\dfrac{\sqrt{x}\left(1+\sqrt{x}\right)+\sqrt{x}\left(1-\sqrt{x}\right)-3\sqrt{x}}{1-x}=\dfrac{-\sqrt{x}}{1-x}=\dfrac{\sqrt{x}}{x-1}\)