K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2017

bài dễ mà không biết

22 tháng 7 2021

Đây nhé ta thêm bớt:

\(x^2+xy+y^2=x^2+y^2+2xy-xy=\left(x+y\right)^2-xy=\left(-2\right)^2-xy=4-xy\)

20 tháng 7 2021

tìm gtnn hay sao bạn?

26 tháng 9 2021

b, ( 5/2 - x ) ^2

=25/4-4/5x+x^2

c,( xy/2 - x/3 ) ( xy/2 + x/3)

=(xy/2)^2-(x/3)^2

c: \(\left(\dfrac{xy}{2}-\dfrac{x}{3}\right)\left(\dfrac{xy}{2}+\dfrac{x}{3}\right)=\dfrac{x^2y^2}{4}-\dfrac{x^2}{9}\)

e: \(\left(2x+3y\right)^2=4x^2+12xy+9y^2\)

29 tháng 10 2023

\(2x^2y-x^3-xy+1+x^3+2xy^2-2\)

\(=\left(-x^3+x^3\right)+\left(1-2\right)+2x^2y-xy+2xy^2\)

\(=0-1+2x^2y-xy+2xy^2\)

\(=2x^2y-xy+2xy^2-1\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.

5 tháng 11 2021

Bổ sung điều kiện: \(x,y>0\)

\(A=\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{xy}{x^2+y^2}\\ A=\dfrac{8}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{1}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{xy}{x^2+y^2}\\ A=\dfrac{8}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{x^2+y^2}{9xy}+\dfrac{xy}{x^2+y^2}\right)\)

Áp dụng BĐT cosi:

\(A\ge\dfrac{8}{9}\cdot2\sqrt{\dfrac{xy}{xy}}+2\sqrt{\dfrac{xy\left(x^2+y^2\right)}{9xy\left(x^2+y^2\right)}}=\dfrac{16}{9}+\dfrac{2}{3}=\dfrac{22}{9}\)

Vậy \(A_{min}=\dfrac{22}{9}\Leftrightarrow x=y\)

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

31 tháng 10 2021

\(A=4\cdot3\left(-2\right)-2\left(3+2\right)=-24-10=-34\\ B=\left(x+y\right)^2-3\left(x+y\right)=\left(x+y\right)\left(x+y-3\right)=\left(x+y\right)\left(2+1-3\right)=0\)

18 tháng 1 2021

Giả thiết tương đương xy + yz + zx = 0.

Từ đó dễ dàng chứng minh được \(\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3=3xy.yz.zx=3x^2y^2z^2\Leftrightarrow\dfrac{\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3}{3x^2y^2z^2}=\dfrac{xy}{z^2}+\dfrac{yz}{x^2}+\dfrac{zx}{y^2}\).

15 tháng 12 2018

a) x + 2 x + 3 ;                 b) x + y x − y .